This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the sum of two vectors is zero, one is the negative of the other. (Contributed by NM, 10-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvaddeq0 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) = 0ℎ ↔ 𝐴 = ( - 1 ·ℎ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvaddsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 −ℎ ( - 1 ·ℎ 𝐵 ) ) ) | |
| 2 | 1 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) = 0ℎ ↔ ( 𝐴 −ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ ) ) |
| 3 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 4 | hvmulcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
| 6 | hvsubeq0 | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) → ( ( 𝐴 −ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ ↔ 𝐴 = ( - 1 ·ℎ 𝐵 ) ) ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 −ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ ↔ 𝐴 = ( - 1 ·ℎ 𝐵 ) ) ) |
| 8 | 2 7 | bitrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) = 0ℎ ↔ 𝐴 = ( - 1 ·ℎ 𝐵 ) ) ) |