This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the sum of two vectors is zero, one is the negative of the other. (Contributed by NM, 10-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvaddeq0 | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) = 0h <-> A = ( -u 1 .h B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvaddsubval | |- ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) = ( A -h ( -u 1 .h B ) ) ) |
|
| 2 | 1 | eqeq1d | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) = 0h <-> ( A -h ( -u 1 .h B ) ) = 0h ) ) |
| 3 | neg1cn | |- -u 1 e. CC |
|
| 4 | hvmulcl | |- ( ( -u 1 e. CC /\ B e. ~H ) -> ( -u 1 .h B ) e. ~H ) |
|
| 5 | 3 4 | mpan | |- ( B e. ~H -> ( -u 1 .h B ) e. ~H ) |
| 6 | hvsubeq0 | |- ( ( A e. ~H /\ ( -u 1 .h B ) e. ~H ) -> ( ( A -h ( -u 1 .h B ) ) = 0h <-> A = ( -u 1 .h B ) ) ) |
|
| 7 | 5 6 | sylan2 | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A -h ( -u 1 .h B ) ) = 0h <-> A = ( -u 1 .h B ) ) ) |
| 8 | 2 7 | bitrd | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) = 0h <-> A = ( -u 1 .h B ) ) ) |