This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar product associative law for Hilbert space operators. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | homulass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) = ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) | |
| 2 | homval | ⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) | |
| 3 | 1 2 | syl3an1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 4 | 3 | 3expia | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑥 ∈ ℋ → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 5 | 4 | 3impa | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑥 ∈ ℋ → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 6 | 5 | imp | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 7 | homval | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) | |
| 8 | 7 | oveq2d | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 9 | 8 | 3expa | ⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 10 | 9 | 3adantl1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 11 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) | |
| 12 | ax-hvmulass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) | |
| 13 | 11 12 | syl3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 14 | 13 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 15 | 14 | exp43 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐵 ∈ ℂ → ( 𝑇 : ℋ ⟶ ℋ → ( 𝑥 ∈ ℋ → ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) ) ) |
| 16 | 15 | 3imp1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 17 | 10 16 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 18 | 6 17 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) |
| 19 | homulcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐵 ·op 𝑇 ) : ℋ ⟶ ℋ ) | |
| 20 | homval | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) | |
| 21 | 19 20 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) |
| 22 | 21 | 3expia | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ) → ( 𝑥 ∈ ℋ → ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 23 | 22 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑥 ∈ ℋ → ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 24 | 23 | imp | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) |
| 25 | 18 24 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) ) |
| 26 | 25 | ralrimiva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ∀ 𝑥 ∈ ℋ ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) ) |
| 27 | homulcl | ⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) : ℋ ⟶ ℋ ) | |
| 28 | 1 27 | stoic3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) : ℋ ⟶ ℋ ) |
| 29 | homulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ·op 𝑇 ) : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) : ℋ ⟶ ℋ ) | |
| 30 | 19 29 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ) → ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) : ℋ ⟶ ℋ ) |
| 31 | 30 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) : ℋ ⟶ ℋ ) |
| 32 | hoeq | ⊢ ( ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) : ℋ ⟶ ℋ ∧ ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) ↔ ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) = ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ) ) | |
| 33 | 28 31 32 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) ↔ ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) = ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ) ) |
| 34 | 26 33 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) = ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ) |