This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S11) of Beran p. 95. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoeq2 | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ 𝑆 = 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom | ⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 3 | ffvelcdm | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑆 ‘ 𝑦 ) ∈ ℋ ) | |
| 4 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) | |
| 5 | hial2eq2 | ⊢ ( ( ( 𝑆 ‘ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) | |
| 6 | hial2eq | ⊢ ( ( ( 𝑆 ‘ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑦 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ↔ ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) | |
| 7 | 5 6 | bitr4d | ⊢ ( ( ( 𝑆 ‘ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑦 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 8 | 3 4 7 | syl2an | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑦 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 9 | 8 | anandirs | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑦 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 10 | 9 | ralbidva | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑦 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 11 | hoeq1 | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑦 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ↔ 𝑆 = 𝑇 ) ) | |
| 12 | 2 10 11 | 3bitrd | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ 𝑆 = 𝑇 ) ) |