This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every Hilbert space operator has at most one adjoint. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjmo | ⊢ ∃* 𝑢 ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26-2 | ⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ∧ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) | |
| 2 | eqtr2 | ⊢ ( ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ∧ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) → ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) | |
| 3 | 2 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ∧ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 4 | 1 3 | sylbir | ⊢ ( ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 5 | hoeq1 | ⊢ ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ↔ 𝑢 = 𝑣 ) ) | |
| 6 | 5 | biimpa | ⊢ ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) → 𝑢 = 𝑣 ) |
| 7 | 4 6 | sylan2 | ⊢ ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ) ∧ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) → 𝑢 = 𝑣 ) |
| 8 | 7 | an4s | ⊢ ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) ∧ ( 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) → 𝑢 = 𝑣 ) |
| 9 | 8 | gen2 | ⊢ ∀ 𝑢 ∀ 𝑣 ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) ∧ ( 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) → 𝑢 = 𝑣 ) |
| 10 | feq1 | ⊢ ( 𝑢 = 𝑣 → ( 𝑢 : ℋ ⟶ ℋ ↔ 𝑣 : ℋ ⟶ ℋ ) ) | |
| 11 | fveq1 | ⊢ ( 𝑢 = 𝑣 → ( 𝑢 ‘ 𝑥 ) = ( 𝑣 ‘ 𝑥 ) ) | |
| 12 | 11 | oveq1d | ⊢ ( 𝑢 = 𝑣 → ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 13 | 12 | eqeq2d | ⊢ ( 𝑢 = 𝑣 → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 14 | 13 | 2ralbidv | ⊢ ( 𝑢 = 𝑣 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 15 | 10 14 | anbi12d | ⊢ ( 𝑢 = 𝑣 → ( ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
| 16 | 15 | mo4 | ⊢ ( ∃* 𝑢 ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ∀ 𝑢 ∀ 𝑣 ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) ∧ ( 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) → 𝑢 = 𝑣 ) ) |
| 17 | 9 16 | mpbir | ⊢ ∃* 𝑢 ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) |