This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of Hermitian (self-adjoint) operators on a normed complex vector space. (Contributed by NM, 26-Jan-2008) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hmoval.8 | ⊢ 𝐻 = ( HmOp ‘ 𝑈 ) | |
| hmoval.9 | ⊢ 𝐴 = ( 𝑈 adj 𝑈 ) | ||
| Assertion | hmoval | ⊢ ( 𝑈 ∈ NrmCVec → 𝐻 = { 𝑡 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑡 ) = 𝑡 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmoval.8 | ⊢ 𝐻 = ( HmOp ‘ 𝑈 ) | |
| 2 | hmoval.9 | ⊢ 𝐴 = ( 𝑈 adj 𝑈 ) | |
| 3 | oveq12 | ⊢ ( ( 𝑢 = 𝑈 ∧ 𝑢 = 𝑈 ) → ( 𝑢 adj 𝑢 ) = ( 𝑈 adj 𝑈 ) ) | |
| 4 | 3 | anidms | ⊢ ( 𝑢 = 𝑈 → ( 𝑢 adj 𝑢 ) = ( 𝑈 adj 𝑈 ) ) |
| 5 | 4 2 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( 𝑢 adj 𝑢 ) = 𝐴 ) |
| 6 | 5 | dmeqd | ⊢ ( 𝑢 = 𝑈 → dom ( 𝑢 adj 𝑢 ) = dom 𝐴 ) |
| 7 | 5 | fveq1d | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = ( 𝐴 ‘ 𝑡 ) ) |
| 8 | 7 | eqeq1d | ⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡 ↔ ( 𝐴 ‘ 𝑡 ) = 𝑡 ) ) |
| 9 | 6 8 | rabeqbidv | ⊢ ( 𝑢 = 𝑈 → { 𝑡 ∈ dom ( 𝑢 adj 𝑢 ) ∣ ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡 } = { 𝑡 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑡 ) = 𝑡 } ) |
| 10 | df-hmo | ⊢ HmOp = ( 𝑢 ∈ NrmCVec ↦ { 𝑡 ∈ dom ( 𝑢 adj 𝑢 ) ∣ ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡 } ) | |
| 11 | ovex | ⊢ ( 𝑈 adj 𝑈 ) ∈ V | |
| 12 | 2 11 | eqeltri | ⊢ 𝐴 ∈ V |
| 13 | 12 | dmex | ⊢ dom 𝐴 ∈ V |
| 14 | 13 | rabex | ⊢ { 𝑡 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑡 ) = 𝑡 } ∈ V |
| 15 | 9 10 14 | fvmpt | ⊢ ( 𝑈 ∈ NrmCVec → ( HmOp ‘ 𝑈 ) = { 𝑡 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑡 ) = 𝑡 } ) |
| 16 | 1 15 | eqtrid | ⊢ ( 𝑈 ∈ NrmCVec → 𝐻 = { 𝑡 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑡 ) = 𝑡 } ) |