This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a hermitian operator." (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hmoval.8 | ⊢ 𝐻 = ( HmOp ‘ 𝑈 ) | |
| hmoval.9 | ⊢ 𝐴 = ( 𝑈 adj 𝑈 ) | ||
| Assertion | ishmo | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑇 ∈ 𝐻 ↔ ( 𝑇 ∈ dom 𝐴 ∧ ( 𝐴 ‘ 𝑇 ) = 𝑇 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmoval.8 | ⊢ 𝐻 = ( HmOp ‘ 𝑈 ) | |
| 2 | hmoval.9 | ⊢ 𝐴 = ( 𝑈 adj 𝑈 ) | |
| 3 | 1 2 | hmoval | ⊢ ( 𝑈 ∈ NrmCVec → 𝐻 = { 𝑡 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑡 ) = 𝑡 } ) |
| 4 | 3 | eleq2d | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑇 ∈ 𝐻 ↔ 𝑇 ∈ { 𝑡 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑡 ) = 𝑡 } ) ) |
| 5 | fveq2 | ⊢ ( 𝑡 = 𝑇 → ( 𝐴 ‘ 𝑡 ) = ( 𝐴 ‘ 𝑇 ) ) | |
| 6 | id | ⊢ ( 𝑡 = 𝑇 → 𝑡 = 𝑇 ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑡 = 𝑇 → ( ( 𝐴 ‘ 𝑡 ) = 𝑡 ↔ ( 𝐴 ‘ 𝑇 ) = 𝑇 ) ) |
| 8 | 7 | elrab | ⊢ ( 𝑇 ∈ { 𝑡 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑡 ) = 𝑡 } ↔ ( 𝑇 ∈ dom 𝐴 ∧ ( 𝐴 ‘ 𝑇 ) = 𝑇 ) ) |
| 9 | 4 8 | bitrdi | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑇 ∈ 𝐻 ↔ ( 𝑇 ∈ dom 𝐴 ∧ ( 𝐴 ‘ 𝑇 ) = 𝑇 ) ) ) |