This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of Hermitian (self-adjoint) operators on a normed complex vector space. (Contributed by NM, 26-Jan-2008) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hmoval.8 | |- H = ( HmOp ` U ) |
|
| hmoval.9 | |- A = ( U adj U ) |
||
| Assertion | hmoval | |- ( U e. NrmCVec -> H = { t e. dom A | ( A ` t ) = t } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmoval.8 | |- H = ( HmOp ` U ) |
|
| 2 | hmoval.9 | |- A = ( U adj U ) |
|
| 3 | oveq12 | |- ( ( u = U /\ u = U ) -> ( u adj u ) = ( U adj U ) ) |
|
| 4 | 3 | anidms | |- ( u = U -> ( u adj u ) = ( U adj U ) ) |
| 5 | 4 2 | eqtr4di | |- ( u = U -> ( u adj u ) = A ) |
| 6 | 5 | dmeqd | |- ( u = U -> dom ( u adj u ) = dom A ) |
| 7 | 5 | fveq1d | |- ( u = U -> ( ( u adj u ) ` t ) = ( A ` t ) ) |
| 8 | 7 | eqeq1d | |- ( u = U -> ( ( ( u adj u ) ` t ) = t <-> ( A ` t ) = t ) ) |
| 9 | 6 8 | rabeqbidv | |- ( u = U -> { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t } = { t e. dom A | ( A ` t ) = t } ) |
| 10 | df-hmo | |- HmOp = ( u e. NrmCVec |-> { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t } ) |
|
| 11 | ovex | |- ( U adj U ) e. _V |
|
| 12 | 2 11 | eqeltri | |- A e. _V |
| 13 | 12 | dmex | |- dom A e. _V |
| 14 | 13 | rabex | |- { t e. dom A | ( A ` t ) = t } e. _V |
| 15 | 9 10 14 | fvmpt | |- ( U e. NrmCVec -> ( HmOp ` U ) = { t e. dom A | ( A ` t ) = t } ) |
| 16 | 1 15 | eqtrid | |- ( U e. NrmCVec -> H = { t e. dom A | ( A ` t ) = t } ) |