This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of Hermitian (self-adjoint) operators on a normed complex vector space (normally a Hilbert space). Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-hmo | ⊢ HmOp = ( 𝑢 ∈ NrmCVec ↦ { 𝑡 ∈ dom ( 𝑢 adj 𝑢 ) ∣ ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | chmo | ⊢ HmOp | |
| 1 | vu | ⊢ 𝑢 | |
| 2 | cnv | ⊢ NrmCVec | |
| 3 | vt | ⊢ 𝑡 | |
| 4 | 1 | cv | ⊢ 𝑢 |
| 5 | caj | ⊢ adj | |
| 6 | 4 4 5 | co | ⊢ ( 𝑢 adj 𝑢 ) |
| 7 | 6 | cdm | ⊢ dom ( 𝑢 adj 𝑢 ) |
| 8 | 3 | cv | ⊢ 𝑡 |
| 9 | 8 6 | cfv | ⊢ ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) |
| 10 | 9 8 | wceq | ⊢ ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡 |
| 11 | 10 3 7 | crab | ⊢ { 𝑡 ∈ dom ( 𝑢 adj 𝑢 ) ∣ ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡 } |
| 12 | 1 2 11 | cmpt | ⊢ ( 𝑢 ∈ NrmCVec ↦ { 𝑡 ∈ dom ( 𝑢 adj 𝑢 ) ∣ ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡 } ) |
| 13 | 0 12 | wceq | ⊢ HmOp = ( 𝑢 ∈ NrmCVec ↦ { 𝑡 ∈ dom ( 𝑢 adj 𝑢 ) ∣ ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡 } ) |