This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | hmeoopn | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ 𝐽 ↔ ( 𝐹 “ 𝐴 ) ∈ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | hmeoima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ∈ 𝐽 ) → ( 𝐹 “ 𝐴 ) ∈ 𝐾 ) | |
| 3 | 2 | ex | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ( 𝐴 ∈ 𝐽 → ( 𝐹 “ 𝐴 ) ∈ 𝐾 ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ 𝐽 → ( 𝐹 “ 𝐴 ) ∈ 𝐾 ) ) |
| 5 | hmeocn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 6 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐹 “ 𝐴 ) ∈ 𝐾 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) | |
| 7 | 6 | ex | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( ( 𝐹 “ 𝐴 ) ∈ 𝐾 → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) ) |
| 8 | 5 7 | syl | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ( ( 𝐹 “ 𝐴 ) ∈ 𝐾 → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 “ 𝐴 ) ∈ 𝐾 → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) ) |
| 10 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 11 | 1 10 | hmeof1o | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 ) |
| 12 | f1of1 | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) | |
| 13 | 11 12 | syl | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) |
| 14 | f1imacnv | ⊢ ( ( 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) | |
| 15 | 13 14 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
| 16 | 15 | eleq1d | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ 𝐽 ↔ 𝐴 ∈ 𝐽 ) ) |
| 17 | 9 16 | sylibd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 “ 𝐴 ) ∈ 𝐾 → 𝐴 ∈ 𝐽 ) ) |
| 18 | 4 17 | impbid | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ 𝐽 ↔ ( 𝐹 “ 𝐴 ) ∈ 𝐾 ) ) |