This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hmeoopn.1 | |- X = U. J |
|
| Assertion | hmeoopn | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( A e. J <-> ( F " A ) e. K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeoopn.1 | |- X = U. J |
|
| 2 | hmeoima | |- ( ( F e. ( J Homeo K ) /\ A e. J ) -> ( F " A ) e. K ) |
|
| 3 | 2 | ex | |- ( F e. ( J Homeo K ) -> ( A e. J -> ( F " A ) e. K ) ) |
| 4 | 3 | adantr | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( A e. J -> ( F " A ) e. K ) ) |
| 5 | hmeocn | |- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
|
| 6 | cnima | |- ( ( F e. ( J Cn K ) /\ ( F " A ) e. K ) -> ( `' F " ( F " A ) ) e. J ) |
|
| 7 | 6 | ex | |- ( F e. ( J Cn K ) -> ( ( F " A ) e. K -> ( `' F " ( F " A ) ) e. J ) ) |
| 8 | 5 7 | syl | |- ( F e. ( J Homeo K ) -> ( ( F " A ) e. K -> ( `' F " ( F " A ) ) e. J ) ) |
| 9 | 8 | adantr | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( F " A ) e. K -> ( `' F " ( F " A ) ) e. J ) ) |
| 10 | eqid | |- U. K = U. K |
|
| 11 | 1 10 | hmeof1o | |- ( F e. ( J Homeo K ) -> F : X -1-1-onto-> U. K ) |
| 12 | f1of1 | |- ( F : X -1-1-onto-> U. K -> F : X -1-1-> U. K ) |
|
| 13 | 11 12 | syl | |- ( F e. ( J Homeo K ) -> F : X -1-1-> U. K ) |
| 14 | f1imacnv | |- ( ( F : X -1-1-> U. K /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) |
|
| 15 | 13 14 | sylan | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) |
| 16 | 15 | eleq1d | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( `' F " ( F " A ) ) e. J <-> A e. J ) ) |
| 17 | 9 16 | sylibd | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( F " A ) e. K -> A e. J ) ) |
| 18 | 4 17 | impbid | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( A e. J <-> ( F " A ) e. K ) ) |