This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | hmeontr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) = ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | hmeocn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 4 | imassrn | ⊢ ( 𝐹 “ 𝐴 ) ⊆ ran 𝐹 | |
| 5 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 6 | 1 5 | hmeof1o | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 ) |
| 8 | f1ofo | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 → 𝐹 : 𝑋 –onto→ ∪ 𝐾 ) | |
| 9 | forn | ⊢ ( 𝐹 : 𝑋 –onto→ ∪ 𝐾 → ran 𝐹 = ∪ 𝐾 ) | |
| 10 | 7 8 9 | 3syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ran 𝐹 = ∪ 𝐾 ) |
| 11 | 4 10 | sseqtrid | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 “ 𝐴 ) ⊆ ∪ 𝐾 ) |
| 12 | 5 | cnntri | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐹 “ 𝐴 ) ⊆ ∪ 𝐾 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ) ) |
| 13 | 3 11 12 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ) ) |
| 14 | f1of1 | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) | |
| 15 | 7 14 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) |
| 16 | f1imacnv | ⊢ ( ( 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) | |
| 17 | 15 16 | sylancom | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
| 18 | 17 | fveq2d | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ) = ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 19 | 13 18 | sseqtrd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 20 | f1ofun | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 → Fun 𝐹 ) | |
| 21 | 7 20 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → Fun 𝐹 ) |
| 22 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 23 | 3 22 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐾 ∈ Top ) |
| 24 | 5 | ntrss3 | ⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐹 “ 𝐴 ) ⊆ ∪ 𝐾 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ∪ 𝐾 ) |
| 25 | 23 11 24 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ∪ 𝐾 ) |
| 26 | 25 10 | sseqtrrd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ran 𝐹 ) |
| 27 | funimass1 | ⊢ ( ( Fun 𝐹 ∧ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ran 𝐹 ) → ( ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) | |
| 28 | 21 26 27 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) |
| 29 | 19 28 | mpd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| 30 | hmeocnvcn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) | |
| 31 | 1 | cnntri | ⊢ ( ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ ◡ 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( int ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹 “ 𝐴 ) ) ) |
| 32 | 30 31 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ ◡ 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( int ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹 “ 𝐴 ) ) ) |
| 33 | imacnvcnv | ⊢ ( ◡ ◡ 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) = ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) | |
| 34 | imacnvcnv | ⊢ ( ◡ ◡ 𝐹 “ 𝐴 ) = ( 𝐹 “ 𝐴 ) | |
| 35 | 34 | fveq2i | ⊢ ( ( int ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹 “ 𝐴 ) ) = ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) |
| 36 | 32 33 35 | 3sstr3g | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) |
| 37 | 29 36 | eqssd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) = ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) |