This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hmeoopn.1 | |- X = U. J |
|
| Assertion | hmeontr | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` K ) ` ( F " A ) ) = ( F " ( ( int ` J ) ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeoopn.1 | |- X = U. J |
|
| 2 | hmeocn | |- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
|
| 3 | 2 | adantr | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> F e. ( J Cn K ) ) |
| 4 | imassrn | |- ( F " A ) C_ ran F |
|
| 5 | eqid | |- U. K = U. K |
|
| 6 | 1 5 | hmeof1o | |- ( F e. ( J Homeo K ) -> F : X -1-1-onto-> U. K ) |
| 7 | 6 | adantr | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> F : X -1-1-onto-> U. K ) |
| 8 | f1ofo | |- ( F : X -1-1-onto-> U. K -> F : X -onto-> U. K ) |
|
| 9 | forn | |- ( F : X -onto-> U. K -> ran F = U. K ) |
|
| 10 | 7 8 9 | 3syl | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ran F = U. K ) |
| 11 | 4 10 | sseqtrid | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( F " A ) C_ U. K ) |
| 12 | 5 | cnntri | |- ( ( F e. ( J Cn K ) /\ ( F " A ) C_ U. K ) -> ( `' F " ( ( int ` K ) ` ( F " A ) ) ) C_ ( ( int ` J ) ` ( `' F " ( F " A ) ) ) ) |
| 13 | 3 11 12 | syl2anc | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' F " ( ( int ` K ) ` ( F " A ) ) ) C_ ( ( int ` J ) ` ( `' F " ( F " A ) ) ) ) |
| 14 | f1of1 | |- ( F : X -1-1-onto-> U. K -> F : X -1-1-> U. K ) |
|
| 15 | 7 14 | syl | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> F : X -1-1-> U. K ) |
| 16 | f1imacnv | |- ( ( F : X -1-1-> U. K /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) |
|
| 17 | 15 16 | sylancom | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) |
| 18 | 17 | fveq2d | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` J ) ` ( `' F " ( F " A ) ) ) = ( ( int ` J ) ` A ) ) |
| 19 | 13 18 | sseqtrd | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' F " ( ( int ` K ) ` ( F " A ) ) ) C_ ( ( int ` J ) ` A ) ) |
| 20 | f1ofun | |- ( F : X -1-1-onto-> U. K -> Fun F ) |
|
| 21 | 7 20 | syl | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> Fun F ) |
| 22 | cntop2 | |- ( F e. ( J Cn K ) -> K e. Top ) |
|
| 23 | 3 22 | syl | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> K e. Top ) |
| 24 | 5 | ntrss3 | |- ( ( K e. Top /\ ( F " A ) C_ U. K ) -> ( ( int ` K ) ` ( F " A ) ) C_ U. K ) |
| 25 | 23 11 24 | syl2anc | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` K ) ` ( F " A ) ) C_ U. K ) |
| 26 | 25 10 | sseqtrrd | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` K ) ` ( F " A ) ) C_ ran F ) |
| 27 | funimass1 | |- ( ( Fun F /\ ( ( int ` K ) ` ( F " A ) ) C_ ran F ) -> ( ( `' F " ( ( int ` K ) ` ( F " A ) ) ) C_ ( ( int ` J ) ` A ) -> ( ( int ` K ) ` ( F " A ) ) C_ ( F " ( ( int ` J ) ` A ) ) ) ) |
|
| 28 | 21 26 27 | syl2anc | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( `' F " ( ( int ` K ) ` ( F " A ) ) ) C_ ( ( int ` J ) ` A ) -> ( ( int ` K ) ` ( F " A ) ) C_ ( F " ( ( int ` J ) ` A ) ) ) ) |
| 29 | 19 28 | mpd | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` K ) ` ( F " A ) ) C_ ( F " ( ( int ` J ) ` A ) ) ) |
| 30 | hmeocnvcn | |- ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) |
|
| 31 | 1 | cnntri | |- ( ( `' F e. ( K Cn J ) /\ A C_ X ) -> ( `' `' F " ( ( int ` J ) ` A ) ) C_ ( ( int ` K ) ` ( `' `' F " A ) ) ) |
| 32 | 30 31 | sylan | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' `' F " ( ( int ` J ) ` A ) ) C_ ( ( int ` K ) ` ( `' `' F " A ) ) ) |
| 33 | imacnvcnv | |- ( `' `' F " ( ( int ` J ) ` A ) ) = ( F " ( ( int ` J ) ` A ) ) |
|
| 34 | imacnvcnv | |- ( `' `' F " A ) = ( F " A ) |
|
| 35 | 34 | fveq2i | |- ( ( int ` K ) ` ( `' `' F " A ) ) = ( ( int ` K ) ` ( F " A ) ) |
| 36 | 32 33 35 | 3sstr3g | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( F " ( ( int ` J ) ` A ) ) C_ ( ( int ` K ) ` ( F " A ) ) ) |
| 37 | 29 36 | eqssd | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` K ) ` ( F " A ) ) = ( F " ( ( int ` J ) ` A ) ) ) |