This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hmeoimaf1o.1 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐽 ↦ ( 𝐹 “ 𝑥 ) ) | |
| Assertion | hmeoimaf1o | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐺 : 𝐽 –1-1-onto→ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeoimaf1o.1 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐽 ↦ ( 𝐹 “ 𝑥 ) ) | |
| 2 | hmeoima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) | |
| 3 | hmeocn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 4 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑦 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) | |
| 5 | 3 4 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑦 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
| 6 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 8 | 6 7 | hmeof1o | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐹 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 ) |
| 10 | f1of1 | ⊢ ( 𝐹 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 → 𝐹 : ∪ 𝐽 –1-1→ ∪ 𝐾 ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐹 : ∪ 𝐽 –1-1→ ∪ 𝐾 ) |
| 12 | elssuni | ⊢ ( 𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽 ) | |
| 13 | 12 | ad2antrl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑥 ⊆ ∪ 𝐽 ) |
| 14 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑦 ) ⊆ dom 𝐹 | |
| 15 | f1dm | ⊢ ( 𝐹 : ∪ 𝐽 –1-1→ ∪ 𝐾 → dom 𝐹 = ∪ 𝐽 ) | |
| 16 | 11 15 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → dom 𝐹 = ∪ 𝐽 ) |
| 17 | 14 16 | sseqtrid | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( ◡ 𝐹 “ 𝑦 ) ⊆ ∪ 𝐽 ) |
| 18 | f1imaeq | ⊢ ( ( 𝐹 : ∪ 𝐽 –1-1→ ∪ 𝐾 ∧ ( 𝑥 ⊆ ∪ 𝐽 ∧ ( ◡ 𝐹 “ 𝑦 ) ⊆ ∪ 𝐽 ) ) → ( ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ↔ 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ) ) | |
| 19 | 11 13 17 18 | syl12anc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ↔ 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 20 | f1ofo | ⊢ ( 𝐹 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 → 𝐹 : ∪ 𝐽 –onto→ ∪ 𝐾 ) | |
| 21 | 9 20 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐹 : ∪ 𝐽 –onto→ ∪ 𝐾 ) |
| 22 | elssuni | ⊢ ( 𝑦 ∈ 𝐾 → 𝑦 ⊆ ∪ 𝐾 ) | |
| 23 | 22 | ad2antll | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑦 ⊆ ∪ 𝐾 ) |
| 24 | foimacnv | ⊢ ( ( 𝐹 : ∪ 𝐽 –onto→ ∪ 𝐾 ∧ 𝑦 ⊆ ∪ 𝐾 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) | |
| 25 | 21 23 24 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) |
| 26 | 25 | eqeq2d | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ↔ ( 𝐹 “ 𝑥 ) = 𝑦 ) ) |
| 27 | eqcom | ⊢ ( ( 𝐹 “ 𝑥 ) = 𝑦 ↔ 𝑦 = ( 𝐹 “ 𝑥 ) ) | |
| 28 | 26 27 | bitrdi | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ↔ 𝑦 = ( 𝐹 “ 𝑥 ) ) ) |
| 29 | 19 28 | bitr3d | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ↔ 𝑦 = ( 𝐹 “ 𝑥 ) ) ) |
| 30 | 1 2 5 29 | f1o2d | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐺 : 𝐽 –1-1-onto→ 𝐾 ) |