This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two vector subtractions simultaneously commute in an inner product. (Contributed by NM, 1-Jul-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hisubcom.1 | ⊢ 𝐴 ∈ ℋ | |
| hisubcom.2 | ⊢ 𝐵 ∈ ℋ | ||
| hisubcom.3 | ⊢ 𝐶 ∈ ℋ | ||
| hisubcom.4 | ⊢ 𝐷 ∈ ℋ | ||
| Assertion | hisubcomi | ⊢ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐶 −ℎ 𝐷 ) ) = ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hisubcom.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | hisubcom.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | hisubcom.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | hisubcom.4 | ⊢ 𝐷 ∈ ℋ | |
| 5 | 2 1 | hvnegdii | ⊢ ( - 1 ·ℎ ( 𝐵 −ℎ 𝐴 ) ) = ( 𝐴 −ℎ 𝐵 ) |
| 6 | 4 3 | hvnegdii | ⊢ ( - 1 ·ℎ ( 𝐷 −ℎ 𝐶 ) ) = ( 𝐶 −ℎ 𝐷 ) |
| 7 | 5 6 | oveq12i | ⊢ ( ( - 1 ·ℎ ( 𝐵 −ℎ 𝐴 ) ) ·ih ( - 1 ·ℎ ( 𝐷 −ℎ 𝐶 ) ) ) = ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐶 −ℎ 𝐷 ) ) |
| 8 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 9 | 2 1 | hvsubcli | ⊢ ( 𝐵 −ℎ 𝐴 ) ∈ ℋ |
| 10 | 4 3 | hvsubcli | ⊢ ( 𝐷 −ℎ 𝐶 ) ∈ ℋ |
| 11 | 8 8 9 10 | his35i | ⊢ ( ( - 1 ·ℎ ( 𝐵 −ℎ 𝐴 ) ) ·ih ( - 1 ·ℎ ( 𝐷 −ℎ 𝐶 ) ) ) = ( ( - 1 · ( ∗ ‘ - 1 ) ) · ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) ) |
| 12 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 13 | cjre | ⊢ ( - 1 ∈ ℝ → ( ∗ ‘ - 1 ) = - 1 ) | |
| 14 | 12 13 | ax-mp | ⊢ ( ∗ ‘ - 1 ) = - 1 |
| 15 | 14 | oveq2i | ⊢ ( - 1 · ( ∗ ‘ - 1 ) ) = ( - 1 · - 1 ) |
| 16 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 17 | 16 16 | mul2negi | ⊢ ( - 1 · - 1 ) = ( 1 · 1 ) |
| 18 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 19 | 15 17 18 | 3eqtri | ⊢ ( - 1 · ( ∗ ‘ - 1 ) ) = 1 |
| 20 | 19 | oveq1i | ⊢ ( ( - 1 · ( ∗ ‘ - 1 ) ) · ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) ) = ( 1 · ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) ) |
| 21 | 9 10 | hicli | ⊢ ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) ∈ ℂ |
| 22 | 21 | mullidi | ⊢ ( 1 · ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) ) = ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) |
| 23 | 11 20 22 | 3eqtri | ⊢ ( ( - 1 ·ℎ ( 𝐵 −ℎ 𝐴 ) ) ·ih ( - 1 ·ℎ ( 𝐷 −ℎ 𝐶 ) ) ) = ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) |
| 24 | 7 23 | eqtr3i | ⊢ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐶 −ℎ 𝐷 ) ) = ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) |