This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two vector subtractions simultaneously commute in an inner product. (Contributed by NM, 1-Jul-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hisubcom.1 | |- A e. ~H |
|
| hisubcom.2 | |- B e. ~H |
||
| hisubcom.3 | |- C e. ~H |
||
| hisubcom.4 | |- D e. ~H |
||
| Assertion | hisubcomi | |- ( ( A -h B ) .ih ( C -h D ) ) = ( ( B -h A ) .ih ( D -h C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hisubcom.1 | |- A e. ~H |
|
| 2 | hisubcom.2 | |- B e. ~H |
|
| 3 | hisubcom.3 | |- C e. ~H |
|
| 4 | hisubcom.4 | |- D e. ~H |
|
| 5 | 2 1 | hvnegdii | |- ( -u 1 .h ( B -h A ) ) = ( A -h B ) |
| 6 | 4 3 | hvnegdii | |- ( -u 1 .h ( D -h C ) ) = ( C -h D ) |
| 7 | 5 6 | oveq12i | |- ( ( -u 1 .h ( B -h A ) ) .ih ( -u 1 .h ( D -h C ) ) ) = ( ( A -h B ) .ih ( C -h D ) ) |
| 8 | neg1cn | |- -u 1 e. CC |
|
| 9 | 2 1 | hvsubcli | |- ( B -h A ) e. ~H |
| 10 | 4 3 | hvsubcli | |- ( D -h C ) e. ~H |
| 11 | 8 8 9 10 | his35i | |- ( ( -u 1 .h ( B -h A ) ) .ih ( -u 1 .h ( D -h C ) ) ) = ( ( -u 1 x. ( * ` -u 1 ) ) x. ( ( B -h A ) .ih ( D -h C ) ) ) |
| 12 | neg1rr | |- -u 1 e. RR |
|
| 13 | cjre | |- ( -u 1 e. RR -> ( * ` -u 1 ) = -u 1 ) |
|
| 14 | 12 13 | ax-mp | |- ( * ` -u 1 ) = -u 1 |
| 15 | 14 | oveq2i | |- ( -u 1 x. ( * ` -u 1 ) ) = ( -u 1 x. -u 1 ) |
| 16 | ax-1cn | |- 1 e. CC |
|
| 17 | 16 16 | mul2negi | |- ( -u 1 x. -u 1 ) = ( 1 x. 1 ) |
| 18 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 19 | 15 17 18 | 3eqtri | |- ( -u 1 x. ( * ` -u 1 ) ) = 1 |
| 20 | 19 | oveq1i | |- ( ( -u 1 x. ( * ` -u 1 ) ) x. ( ( B -h A ) .ih ( D -h C ) ) ) = ( 1 x. ( ( B -h A ) .ih ( D -h C ) ) ) |
| 21 | 9 10 | hicli | |- ( ( B -h A ) .ih ( D -h C ) ) e. CC |
| 22 | 21 | mullidi | |- ( 1 x. ( ( B -h A ) .ih ( D -h C ) ) ) = ( ( B -h A ) .ih ( D -h C ) ) |
| 23 | 11 20 22 | 3eqtri | |- ( ( -u 1 .h ( B -h A ) ) .ih ( -u 1 .h ( D -h C ) ) ) = ( ( B -h A ) .ih ( D -h C ) ) |
| 24 | 7 23 | eqtr3i | |- ( ( A -h B ) .ih ( C -h D ) ) = ( ( B -h A ) .ih ( D -h C ) ) |