This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move scalar multiplication to outside of inner product. (Contributed by NM, 1-Jul-2005) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | his35.1 | ⊢ 𝐴 ∈ ℂ | |
| his35.2 | ⊢ 𝐵 ∈ ℂ | ||
| his35.3 | ⊢ 𝐶 ∈ ℋ | ||
| his35.4 | ⊢ 𝐷 ∈ ℋ | ||
| Assertion | his35i | ⊢ ( ( 𝐴 ·ℎ 𝐶 ) ·ih ( 𝐵 ·ℎ 𝐷 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 ·ih 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | his35.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | his35.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | his35.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | his35.4 | ⊢ 𝐷 ∈ ℋ | |
| 5 | his35 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 ·ℎ 𝐶 ) ·ih ( 𝐵 ·ℎ 𝐷 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 ·ih 𝐷 ) ) ) | |
| 6 | 1 2 3 4 5 | mp4an | ⊢ ( ( 𝐴 ·ℎ 𝐶 ) ·ih ( 𝐵 ·ℎ 𝐷 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 ·ih 𝐷 ) ) |