This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert space norm in terms of vector space norm. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hilnorm.5 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | |
| hilnorm.2 | ⊢ ·ih = ( ·𝑖OLD ‘ 𝑈 ) | ||
| hilnorm.9 | ⊢ 𝑈 ∈ NrmCVec | ||
| Assertion | hilnormi | ⊢ normℎ = ( normCV ‘ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilnorm.5 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | |
| 2 | hilnorm.2 | ⊢ ·ih = ( ·𝑖OLD ‘ 𝑈 ) | |
| 3 | hilnorm.9 | ⊢ 𝑈 ∈ NrmCVec | |
| 4 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 5 | 1 4 2 | ipnm | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) = ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ) |
| 6 | 3 5 | mpan | ⊢ ( 𝑥 ∈ ℋ → ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) = ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ) |
| 7 | 6 | mpteq2ia | ⊢ ( 𝑥 ∈ ℋ ↦ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ℋ ↦ ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ) |
| 8 | 1 4 | nvf | ⊢ ( 𝑈 ∈ NrmCVec → ( normCV ‘ 𝑈 ) : ℋ ⟶ ℝ ) |
| 9 | 8 | feqmptd | ⊢ ( 𝑈 ∈ NrmCVec → ( normCV ‘ 𝑈 ) = ( 𝑥 ∈ ℋ ↦ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 10 | 3 9 | ax-mp | ⊢ ( normCV ‘ 𝑈 ) = ( 𝑥 ∈ ℋ ↦ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) |
| 11 | dfhnorm2 | ⊢ normℎ = ( 𝑥 ∈ ℋ ↦ ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ) | |
| 12 | 7 10 11 | 3eqtr4ri | ⊢ normℎ = ( normCV ‘ 𝑈 ) |