This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vector whose inner product is always zero is zero. (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hial02 | ⊢ ( 𝐴 ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·ih 𝐴 ) = ( 𝐴 ·ih 𝐴 ) ) | |
| 2 | 1 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ·ih 𝐴 ) = 0 ↔ ( 𝐴 ·ih 𝐴 ) = 0 ) ) |
| 3 | 2 | rspcv | ⊢ ( 𝐴 ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝐴 ) = 0 → ( 𝐴 ·ih 𝐴 ) = 0 ) ) |
| 4 | his6 | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝐴 ·ih 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) ) | |
| 5 | 3 4 | sylibd | ⊢ ( 𝐴 ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝐴 ) = 0 → 𝐴 = 0ℎ ) ) |
| 6 | oveq2 | ⊢ ( 𝐴 = 0ℎ → ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 0ℎ ) ) | |
| 7 | hi02 | ⊢ ( 𝑥 ∈ ℋ → ( 𝑥 ·ih 0ℎ ) = 0 ) | |
| 8 | 6 7 | sylan9eq | ⊢ ( ( 𝐴 = 0ℎ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih 𝐴 ) = 0 ) |
| 9 | 8 | ex | ⊢ ( 𝐴 = 0ℎ → ( 𝑥 ∈ ℋ → ( 𝑥 ·ih 𝐴 ) = 0 ) ) |
| 10 | 9 | a1i | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 = 0ℎ → ( 𝑥 ∈ ℋ → ( 𝑥 ·ih 𝐴 ) = 0 ) ) ) |
| 11 | 10 | ralrimdv | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 = 0ℎ → ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝐴 ) = 0 ) ) |
| 12 | 5 11 | impbid | ⊢ ( 𝐴 ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) ) |