This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vector whose inner product is always zero is zero. (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hial02 | |- ( A e. ~H -> ( A. x e. ~H ( x .ih A ) = 0 <-> A = 0h ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( x = A -> ( x .ih A ) = ( A .ih A ) ) |
|
| 2 | 1 | eqeq1d | |- ( x = A -> ( ( x .ih A ) = 0 <-> ( A .ih A ) = 0 ) ) |
| 3 | 2 | rspcv | |- ( A e. ~H -> ( A. x e. ~H ( x .ih A ) = 0 -> ( A .ih A ) = 0 ) ) |
| 4 | his6 | |- ( A e. ~H -> ( ( A .ih A ) = 0 <-> A = 0h ) ) |
|
| 5 | 3 4 | sylibd | |- ( A e. ~H -> ( A. x e. ~H ( x .ih A ) = 0 -> A = 0h ) ) |
| 6 | oveq2 | |- ( A = 0h -> ( x .ih A ) = ( x .ih 0h ) ) |
|
| 7 | hi02 | |- ( x e. ~H -> ( x .ih 0h ) = 0 ) |
|
| 8 | 6 7 | sylan9eq | |- ( ( A = 0h /\ x e. ~H ) -> ( x .ih A ) = 0 ) |
| 9 | 8 | ex | |- ( A = 0h -> ( x e. ~H -> ( x .ih A ) = 0 ) ) |
| 10 | 9 | a1i | |- ( A e. ~H -> ( A = 0h -> ( x e. ~H -> ( x .ih A ) = 0 ) ) ) |
| 11 | 10 | ralrimdv | |- ( A e. ~H -> ( A = 0h -> A. x e. ~H ( x .ih A ) = 0 ) ) |
| 12 | 5 11 | impbid | |- ( A e. ~H -> ( A. x e. ~H ( x .ih A ) = 0 <-> A = 0h ) ) |