This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of an operator in Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhnmo.1 | |- U = <. <. +h , .h >. , normh >. |
|
| hhnmo.2 | |- N = ( U normOpOLD U ) |
||
| Assertion | hhnmoi | |- normop = N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhnmo.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | hhnmo.2 | |- N = ( U normOpOLD U ) |
|
| 3 | df-nmop | |- normop = ( t e. ( ~H ^m ~H ) |-> sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( t ` y ) ) ) } , RR* , < ) ) |
|
| 4 | 1 | hhnv | |- U e. NrmCVec |
| 5 | 1 | hhba | |- ~H = ( BaseSet ` U ) |
| 6 | 1 | hhnm | |- normh = ( normCV ` U ) |
| 7 | 5 5 6 6 2 | nmoofval | |- ( ( U e. NrmCVec /\ U e. NrmCVec ) -> N = ( t e. ( ~H ^m ~H ) |-> sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( t ` y ) ) ) } , RR* , < ) ) ) |
| 8 | 4 4 7 | mp2an | |- N = ( t e. ( ~H ^m ~H ) |-> sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( t ` y ) ) ) } , RR* , < ) ) |
| 9 | 3 8 | eqtr4i | |- normop = N |