This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nmop | ⊢ normop = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnop | ⊢ normop | |
| 1 | vt | ⊢ 𝑡 | |
| 2 | chba | ⊢ ℋ | |
| 3 | cmap | ⊢ ↑m | |
| 4 | 2 2 3 | co | ⊢ ( ℋ ↑m ℋ ) |
| 5 | vx | ⊢ 𝑥 | |
| 6 | vz | ⊢ 𝑧 | |
| 7 | cno | ⊢ normℎ | |
| 8 | 6 | cv | ⊢ 𝑧 |
| 9 | 8 7 | cfv | ⊢ ( normℎ ‘ 𝑧 ) |
| 10 | cle | ⊢ ≤ | |
| 11 | c1 | ⊢ 1 | |
| 12 | 9 11 10 | wbr | ⊢ ( normℎ ‘ 𝑧 ) ≤ 1 |
| 13 | 5 | cv | ⊢ 𝑥 |
| 14 | 1 | cv | ⊢ 𝑡 |
| 15 | 8 14 | cfv | ⊢ ( 𝑡 ‘ 𝑧 ) |
| 16 | 15 7 | cfv | ⊢ ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) |
| 17 | 13 16 | wceq | ⊢ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) |
| 18 | 12 17 | wa | ⊢ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
| 19 | 18 6 2 | wrex | ⊢ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
| 20 | 19 5 | cab | ⊢ { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) ) } |
| 21 | cxr | ⊢ ℝ* | |
| 22 | clt | ⊢ < | |
| 23 | 20 21 22 | csup | ⊢ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) |
| 24 | 1 4 23 | cmpt | ⊢ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 25 | 0 24 | wceq | ⊢ normop = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |