This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm function. (Contributed by NM, 6-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoofval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmoofval.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmoofval.3 | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | ||
| nmoofval.4 | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| nmoofval.6 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| Assertion | nmoofval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑁 = ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoofval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmoofval.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | nmoofval.3 | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | |
| 4 | nmoofval.4 | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 5 | nmoofval.6 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 6 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = ( BaseSet ‘ 𝑈 ) ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = 𝑋 ) |
| 8 | 7 | oveq2d | ⊢ ( 𝑢 = 𝑈 → ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) = ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) ) |
| 9 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( normCV ‘ 𝑢 ) = ( normCV ‘ 𝑈 ) ) | |
| 10 | 9 3 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( normCV ‘ 𝑢 ) = 𝐿 ) |
| 11 | 10 | fveq1d | ⊢ ( 𝑢 = 𝑈 → ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) = ( 𝐿 ‘ 𝑧 ) ) |
| 12 | 11 | breq1d | ⊢ ( 𝑢 = 𝑈 → ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ↔ ( 𝐿 ‘ 𝑧 ) ≤ 1 ) ) |
| 13 | 12 | anbi1d | ⊢ ( 𝑢 = 𝑈 → ( ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ↔ ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) ) |
| 14 | 7 13 | rexeqbidv | ⊢ ( 𝑢 = 𝑈 → ( ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ↔ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) ) |
| 15 | 14 | abbidv | ⊢ ( 𝑢 = 𝑈 → { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } = { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ) |
| 16 | 15 | supeq1d | ⊢ ( 𝑢 = 𝑈 → sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 17 | 8 16 | mpteq12dv | ⊢ ( 𝑢 = 𝑈 → ( 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) = ( 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ) |
| 18 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( BaseSet ‘ 𝑤 ) = ( BaseSet ‘ 𝑊 ) ) | |
| 19 | 18 2 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( BaseSet ‘ 𝑤 ) = 𝑌 ) |
| 20 | 19 | oveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) = ( 𝑌 ↑m 𝑋 ) ) |
| 21 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( normCV ‘ 𝑤 ) = ( normCV ‘ 𝑊 ) ) | |
| 22 | 21 4 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( normCV ‘ 𝑤 ) = 𝑀 ) |
| 23 | 22 | fveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
| 24 | 23 | eqeq2d | ⊢ ( 𝑤 = 𝑊 → ( 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ↔ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 25 | 24 | anbi2d | ⊢ ( 𝑤 = 𝑊 → ( ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ↔ ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) ) |
| 26 | 25 | rexbidv | ⊢ ( 𝑤 = 𝑊 → ( ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ↔ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) ) |
| 27 | 26 | abbidv | ⊢ ( 𝑤 = 𝑊 → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } = { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ) |
| 28 | 27 | supeq1d | ⊢ ( 𝑤 = 𝑊 → sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 29 | 20 28 | mpteq12dv | ⊢ ( 𝑤 = 𝑊 → ( 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) = ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ) |
| 30 | df-nmoo | ⊢ normOpOLD = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ) | |
| 31 | ovex | ⊢ ( 𝑌 ↑m 𝑋 ) ∈ V | |
| 32 | 31 | mptex | ⊢ ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ∈ V |
| 33 | 17 29 30 32 | ovmpo | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑈 normOpOLD 𝑊 ) = ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ) |
| 34 | 5 33 | eqtrid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑁 = ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ) |