This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used for derivation of the completeness axiom ax-hcompl from ZFC Hilbert space theory. (Contributed by NM, 9-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhlm.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| hhlm.2 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| hhlm.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| hhcmpl.c | ⊢ ( 𝐹 ∈ ( Cau ‘ 𝐷 ) → ∃ 𝑥 ∈ ℋ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) | ||
| Assertion | hhcmpl | ⊢ ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhlm.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | hhlm.2 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 3 | hhlm.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 4 | hhcmpl.c | ⊢ ( 𝐹 ∈ ( Cau ‘ 𝐷 ) → ∃ 𝑥 ∈ ℋ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) | |
| 5 | 4 | anim1ci | ⊢ ( ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ∧ 𝐹 ∈ ( ℋ ↑m ℕ ) ) → ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ ∃ 𝑥 ∈ ℋ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 6 | elin | ⊢ ( 𝐹 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ↔ ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ∧ 𝐹 ∈ ( ℋ ↑m ℕ ) ) ) | |
| 7 | r19.42v | ⊢ ( ∃ 𝑥 ∈ ℋ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ↔ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ ∃ 𝑥 ∈ ℋ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) | |
| 8 | 5 6 7 | 3imtr4i | ⊢ ( 𝐹 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) → ∃ 𝑥 ∈ ℋ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 9 | 1 2 | hhcau | ⊢ Cauchy = ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) |
| 10 | 9 | eleq2i | ⊢ ( 𝐹 ∈ Cauchy ↔ 𝐹 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ) |
| 11 | 1 2 3 | hhlm | ⊢ ⇝𝑣 = ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) |
| 12 | 11 | breqi | ⊢ ( 𝐹 ⇝𝑣 𝑥 ↔ 𝐹 ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) 𝑥 ) |
| 13 | vex | ⊢ 𝑥 ∈ V | |
| 14 | 13 | brresi | ⊢ ( 𝐹 ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) 𝑥 ↔ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 15 | 12 14 | bitri | ⊢ ( 𝐹 ⇝𝑣 𝑥 ↔ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 16 | 15 | rexbii | ⊢ ( ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ↔ ∃ 𝑥 ∈ ℋ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 17 | 8 10 16 | 3imtr4i | ⊢ ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ) |