This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used for derivation of the completeness axiom ax-hcompl from ZFC Hilbert space theory. (Contributed by NM, 9-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhlm.1 | |- U = <. <. +h , .h >. , normh >. |
|
| hhlm.2 | |- D = ( IndMet ` U ) |
||
| hhlm.3 | |- J = ( MetOpen ` D ) |
||
| hhcmpl.c | |- ( F e. ( Cau ` D ) -> E. x e. ~H F ( ~~>t ` J ) x ) |
||
| Assertion | hhcmpl | |- ( F e. Cauchy -> E. x e. ~H F ~~>v x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhlm.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | hhlm.2 | |- D = ( IndMet ` U ) |
|
| 3 | hhlm.3 | |- J = ( MetOpen ` D ) |
|
| 4 | hhcmpl.c | |- ( F e. ( Cau ` D ) -> E. x e. ~H F ( ~~>t ` J ) x ) |
|
| 5 | 4 | anim1ci | |- ( ( F e. ( Cau ` D ) /\ F e. ( ~H ^m NN ) ) -> ( F e. ( ~H ^m NN ) /\ E. x e. ~H F ( ~~>t ` J ) x ) ) |
| 6 | elin | |- ( F e. ( ( Cau ` D ) i^i ( ~H ^m NN ) ) <-> ( F e. ( Cau ` D ) /\ F e. ( ~H ^m NN ) ) ) |
|
| 7 | r19.42v | |- ( E. x e. ~H ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` J ) x ) <-> ( F e. ( ~H ^m NN ) /\ E. x e. ~H F ( ~~>t ` J ) x ) ) |
|
| 8 | 5 6 7 | 3imtr4i | |- ( F e. ( ( Cau ` D ) i^i ( ~H ^m NN ) ) -> E. x e. ~H ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` J ) x ) ) |
| 9 | 1 2 | hhcau | |- Cauchy = ( ( Cau ` D ) i^i ( ~H ^m NN ) ) |
| 10 | 9 | eleq2i | |- ( F e. Cauchy <-> F e. ( ( Cau ` D ) i^i ( ~H ^m NN ) ) ) |
| 11 | 1 2 3 | hhlm | |- ~~>v = ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) |
| 12 | 11 | breqi | |- ( F ~~>v x <-> F ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) x ) |
| 13 | vex | |- x e. _V |
|
| 14 | 13 | brresi | |- ( F ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) x <-> ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` J ) x ) ) |
| 15 | 12 14 | bitri | |- ( F ~~>v x <-> ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` J ) x ) ) |
| 16 | 15 | rexbii | |- ( E. x e. ~H F ~~>v x <-> E. x e. ~H ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` J ) x ) ) |
| 17 | 8 10 16 | 3imtr4i | |- ( F e. Cauchy -> E. x e. ~H F ~~>v x ) |