This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used for derivation of the completeness axiom ax-hcompl from ZFC Hilbert space theory. The first five hypotheses would be satisfied by the definitions described in ax-hilex ; the 6th would be satisfied by eqid ; the 7th by a given fixed Hilbert space; and the last by Theorem hlcompl . (Contributed by NM, 13-Sep-2007) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hilcompl.1 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | |
| hilcompl.2 | ⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) | ||
| hilcompl.3 | ⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) | ||
| hilcompl.4 | ⊢ ·ih = ( ·𝑖OLD ‘ 𝑈 ) | ||
| hilcompl.5 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| hilcompl.6 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| hilcompl.7 | ⊢ 𝑈 ∈ CHilOLD | ||
| hilcompl.8 | ⊢ ( 𝐹 ∈ ( Cau ‘ 𝐷 ) → ∃ 𝑥 ∈ ℋ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) | ||
| Assertion | hilcompl | ⊢ ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilcompl.1 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | |
| 2 | hilcompl.2 | ⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) | |
| 3 | hilcompl.3 | ⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | hilcompl.4 | ⊢ ·ih = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | hilcompl.5 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 6 | hilcompl.6 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 7 | hilcompl.7 | ⊢ 𝑈 ∈ CHilOLD | |
| 8 | hilcompl.8 | ⊢ ( 𝐹 ∈ ( Cau ‘ 𝐷 ) → ∃ 𝑥 ∈ ℋ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) | |
| 9 | 7 | hlnvi | ⊢ 𝑈 ∈ NrmCVec |
| 10 | 1 2 3 4 9 | hilhhi | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
| 11 | 10 5 6 8 | hhcmpl | ⊢ ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ) |