This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero operator in Hilbert space. (Contributed by NM, 7-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhnmo.1 | |- U = <. <. +h , .h >. , normh >. |
|
| hh0o.2 | |- Z = ( U 0op U ) |
||
| Assertion | hh0oi | |- 0hop = Z |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhnmo.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | hh0o.2 | |- Z = ( U 0op U ) |
|
| 3 | 1 | hhba | |- ~H = ( BaseSet ` U ) |
| 4 | df-ch0 | |- 0H = { 0h } |
|
| 5 | 1 | hh0v | |- 0h = ( 0vec ` U ) |
| 6 | 5 | sneqi | |- { 0h } = { ( 0vec ` U ) } |
| 7 | 4 6 | eqtri | |- 0H = { ( 0vec ` U ) } |
| 8 | 3 7 | xpeq12i | |- ( ~H X. 0H ) = ( ( BaseSet ` U ) X. { ( 0vec ` U ) } ) |
| 9 | df0op2 | |- 0hop = ( ~H X. 0H ) |
|
| 10 | 1 | hhnv | |- U e. NrmCVec |
| 11 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 12 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 13 | 11 12 2 | 0ofval | |- ( ( U e. NrmCVec /\ U e. NrmCVec ) -> Z = ( ( BaseSet ` U ) X. { ( 0vec ` U ) } ) ) |
| 14 | 10 10 13 | mp2an | |- Z = ( ( BaseSet ` U ) X. { ( 0vec ` U ) } ) |
| 15 | 8 9 14 | 3eqtr4i | |- 0hop = Z |