This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hausdorff condition still holds if one considers general neighborhoods instead of open sets. (Contributed by Jeff Hankins, 5-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hausnei2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Haus ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishaus2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Haus ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) | |
| 2 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 3 | simp1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽 ) → 𝐽 ∈ Top ) | |
| 4 | simp2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽 ) → 𝑚 ∈ 𝐽 ) | |
| 5 | simp1 | ⊢ ( ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) → 𝑥 ∈ 𝑚 ) | |
| 6 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑥 ∈ 𝑚 ) → 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) | |
| 7 | 3 4 5 6 | syl2an3an | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽 ) ∧ ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) → 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) |
| 8 | simp3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽 ) → 𝑛 ∈ 𝐽 ) | |
| 9 | simp2 | ⊢ ( ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) → 𝑦 ∈ 𝑛 ) | |
| 10 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑛 ∈ 𝐽 ∧ 𝑦 ∈ 𝑛 ) → 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ) | |
| 11 | 3 8 9 10 | syl2an3an | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽 ) ∧ ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) → 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ) |
| 12 | simpr3 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽 ) ∧ ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) → ( 𝑚 ∩ 𝑛 ) = ∅ ) | |
| 13 | ineq1 | ⊢ ( 𝑢 = 𝑚 → ( 𝑢 ∩ 𝑣 ) = ( 𝑚 ∩ 𝑣 ) ) | |
| 14 | 13 | eqeq1d | ⊢ ( 𝑢 = 𝑚 → ( ( 𝑢 ∩ 𝑣 ) = ∅ ↔ ( 𝑚 ∩ 𝑣 ) = ∅ ) ) |
| 15 | ineq2 | ⊢ ( 𝑣 = 𝑛 → ( 𝑚 ∩ 𝑣 ) = ( 𝑚 ∩ 𝑛 ) ) | |
| 16 | 15 | eqeq1d | ⊢ ( 𝑣 = 𝑛 → ( ( 𝑚 ∩ 𝑣 ) = ∅ ↔ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 17 | 14 16 | rspc2ev | ⊢ ( ( 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) → ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) |
| 18 | 7 11 12 17 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽 ) ∧ ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) → ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) |
| 19 | 18 | ex | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) → ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 20 | 19 | 3expib | ⊢ ( 𝐽 ∈ Top → ( ( 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) → ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
| 21 | 20 | rexlimdvv | ⊢ ( 𝐽 ∈ Top → ( ∃ 𝑚 ∈ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) → ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 22 | neii2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → ∃ 𝑚 ∈ 𝐽 ( { 𝑥 } ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) ) | |
| 23 | 22 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) → ∃ 𝑚 ∈ 𝐽 ( { 𝑥 } ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) ) ) |
| 24 | neii2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ) → ∃ 𝑛 ∈ 𝐽 ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) | |
| 25 | 24 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) → ∃ 𝑛 ∈ 𝐽 ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) |
| 26 | vex | ⊢ 𝑥 ∈ V | |
| 27 | 26 | snss | ⊢ ( 𝑥 ∈ 𝑚 ↔ { 𝑥 } ⊆ 𝑚 ) |
| 28 | 27 | anbi1i | ⊢ ( ( 𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) ↔ ( { 𝑥 } ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) ) |
| 29 | vex | ⊢ 𝑦 ∈ V | |
| 30 | 29 | snss | ⊢ ( 𝑦 ∈ 𝑛 ↔ { 𝑦 } ⊆ 𝑛 ) |
| 31 | 30 | anbi1i | ⊢ ( ( 𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ↔ ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) |
| 32 | simp1l | ⊢ ( ( ( 𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → 𝑥 ∈ 𝑚 ) | |
| 33 | simp2l | ⊢ ( ( ( 𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → 𝑦 ∈ 𝑛 ) | |
| 34 | ss2in | ⊢ ( ( 𝑚 ⊆ 𝑢 ∧ 𝑛 ⊆ 𝑣 ) → ( 𝑚 ∩ 𝑛 ) ⊆ ( 𝑢 ∩ 𝑣 ) ) | |
| 35 | ssn0 | ⊢ ( ( ( 𝑚 ∩ 𝑛 ) ⊆ ( 𝑢 ∩ 𝑣 ) ∧ ( 𝑚 ∩ 𝑛 ) ≠ ∅ ) → ( 𝑢 ∩ 𝑣 ) ≠ ∅ ) | |
| 36 | 35 | ex | ⊢ ( ( 𝑚 ∩ 𝑛 ) ⊆ ( 𝑢 ∩ 𝑣 ) → ( ( 𝑚 ∩ 𝑛 ) ≠ ∅ → ( 𝑢 ∩ 𝑣 ) ≠ ∅ ) ) |
| 37 | 36 | necon4d | ⊢ ( ( 𝑚 ∩ 𝑛 ) ⊆ ( 𝑢 ∩ 𝑣 ) → ( ( 𝑢 ∩ 𝑣 ) = ∅ → ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 38 | 34 37 | syl | ⊢ ( ( 𝑚 ⊆ 𝑢 ∧ 𝑛 ⊆ 𝑣 ) → ( ( 𝑢 ∩ 𝑣 ) = ∅ → ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 39 | 38 | ad2ant2l | ⊢ ( ( ( 𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) → ( ( 𝑢 ∩ 𝑣 ) = ∅ → ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 40 | 39 | 3impia | ⊢ ( ( ( 𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → ( 𝑚 ∩ 𝑛 ) = ∅ ) |
| 41 | 32 33 40 | 3jca | ⊢ ( ( ( 𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 42 | 41 | 3exp | ⊢ ( ( 𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) → ( ( 𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) → ( ( 𝑢 ∩ 𝑣 ) = ∅ → ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 43 | 31 42 | biimtrrid | ⊢ ( ( 𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) → ( ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) → ( ( 𝑢 ∩ 𝑣 ) = ∅ → ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 44 | 43 | com3r | ⊢ ( ( 𝑢 ∩ 𝑣 ) = ∅ → ( ( 𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) → ( ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) → ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 45 | 44 | imp | ⊢ ( ( ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) ) → ( ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) → ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 46 | 45 | 3adant1 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) ) → ( ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) → ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 47 | 46 | reximdv | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) ) → ( ∃ 𝑛 ∈ 𝐽 ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) → ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 48 | 47 | 3exp | ⊢ ( 𝐽 ∈ Top → ( ( 𝑢 ∩ 𝑣 ) = ∅ → ( ( 𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) → ( ∃ 𝑛 ∈ 𝐽 ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) → ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) ) |
| 49 | 48 | com34 | ⊢ ( 𝐽 ∈ Top → ( ( 𝑢 ∩ 𝑣 ) = ∅ → ( ∃ 𝑛 ∈ 𝐽 ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) → ( ( 𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) → ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) ) |
| 50 | 49 | 3imp | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ∃ 𝑛 ∈ 𝐽 ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) → ( ( 𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) → ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 51 | 28 50 | biimtrrid | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ∃ 𝑛 ∈ 𝐽 ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) → ( ( { 𝑥 } ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) → ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 52 | 51 | reximdv | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ∃ 𝑛 ∈ 𝐽 ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) → ( ∃ 𝑚 ∈ 𝐽 ( { 𝑥 } ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) → ∃ 𝑚 ∈ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 53 | 52 | 3exp | ⊢ ( 𝐽 ∈ Top → ( ( 𝑢 ∩ 𝑣 ) = ∅ → ( ∃ 𝑛 ∈ 𝐽 ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) → ( ∃ 𝑚 ∈ 𝐽 ( { 𝑥 } ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) → ∃ 𝑚 ∈ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) ) |
| 54 | 53 | com24 | ⊢ ( 𝐽 ∈ Top → ( ∃ 𝑚 ∈ 𝐽 ( { 𝑥 } ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) → ( ∃ 𝑛 ∈ 𝐽 ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) → ( ( 𝑢 ∩ 𝑣 ) = ∅ → ∃ 𝑚 ∈ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) ) |
| 55 | 54 | impd | ⊢ ( 𝐽 ∈ Top → ( ( ∃ 𝑚 ∈ 𝐽 ( { 𝑥 } ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢 ) ∧ ∃ 𝑛 ∈ 𝐽 ( { 𝑦 } ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) → ( ( 𝑢 ∩ 𝑣 ) = ∅ → ∃ 𝑚 ∈ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 56 | 23 25 55 | syl2and | ⊢ ( 𝐽 ∈ Top → ( ( 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ) → ( ( 𝑢 ∩ 𝑣 ) = ∅ → ∃ 𝑚 ∈ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 57 | 56 | rexlimdvv | ⊢ ( 𝐽 ∈ Top → ( ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ( 𝑢 ∩ 𝑣 ) = ∅ → ∃ 𝑚 ∈ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 58 | 21 57 | impbid | ⊢ ( 𝐽 ∈ Top → ( ∃ 𝑚 ∈ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ↔ ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 59 | 58 | imbi2d | ⊢ ( 𝐽 ∈ Top → ( ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ↔ ( 𝑥 ≠ 𝑦 → ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
| 60 | 59 | 2ralbidv | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
| 61 | 2 60 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
| 62 | 1 61 | bitrd | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Haus ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |