This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem chpssati

Description: Two Hilbert lattice elements in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 𝐴C
chpssat.2 𝐵C
Assertion chpssati ( 𝐴𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )

Proof

Step Hyp Ref Expression
1 chpssat.1 𝐴C
2 chpssat.2 𝐵C
3 dfpss3 ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐵𝐴 ) )
4 iman ( ( 𝑥𝐵𝑥𝐴 ) ↔ ¬ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )
5 4 ralbii ( ∀ 𝑥 ∈ HAtoms ( 𝑥𝐵𝑥𝐴 ) ↔ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )
6 ss2rab ( { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } ↔ ∀ 𝑥 ∈ HAtoms ( 𝑥𝐵𝑥𝐴 ) )
7 ssrab2 { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ⊆ HAtoms
8 atssch HAtoms ⊆ C
9 7 8 sstri { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ⊆ C
10 ssrab2 { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } ⊆ HAtoms
11 10 8 sstri { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } ⊆ C
12 chsupss ( ( { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ⊆ C ∧ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } ⊆ C ) → ( { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } → ( ‘ { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ) ⊆ ( ‘ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } ) ) )
13 9 11 12 mp2an ( { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } → ( ‘ { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ) ⊆ ( ‘ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } ) )
14 2 hatomistici 𝐵 = ( ‘ { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } )
15 1 hatomistici 𝐴 = ( ‘ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } )
16 13 14 15 3sstr4g ( { 𝑥 ∈ HAtoms ∣ 𝑥𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥𝐴 } → 𝐵𝐴 )
17 6 16 sylbir ( ∀ 𝑥 ∈ HAtoms ( 𝑥𝐵𝑥𝐴 ) → 𝐵𝐴 )
18 5 17 sylbir ( ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) → 𝐵𝐴 )
19 18 con3i ( ¬ 𝐵𝐴 → ¬ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )
20 dfrex2 ( ∃ 𝑥 ∈ HAtoms ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) ↔ ¬ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )
21 19 20 sylibr ( ¬ 𝐵𝐴 → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )
22 3 21 simplbiim ( 𝐴𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )