This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two Hilbert lattice elements in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chpssat.1 | ⊢ 𝐴 ∈ Cℋ | |
| chpssat.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | chpssati | ⊢ ( 𝐴 ⊊ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpssat.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | chpssat.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | dfpss3 | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ) | |
| 4 | iman | ⊢ ( ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ↔ ¬ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) | |
| 5 | 4 | ralbii | ⊢ ( ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ↔ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |
| 6 | ss2rab | ⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ↔ ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ) | |
| 7 | ssrab2 | ⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ HAtoms | |
| 8 | atssch | ⊢ HAtoms ⊆ Cℋ | |
| 9 | 7 8 | sstri | ⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ Cℋ |
| 10 | ssrab2 | ⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ HAtoms | |
| 11 | 10 8 | sstri | ⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ |
| 12 | chsupss | ⊢ ( ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ Cℋ ∧ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ ) → ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ) ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) | |
| 13 | 9 11 12 | mp2an | ⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ) ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
| 14 | 2 | hatomistici | ⊢ 𝐵 = ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ) |
| 15 | 1 | hatomistici | ⊢ 𝐴 = ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
| 16 | 13 14 15 | 3sstr4g | ⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → 𝐵 ⊆ 𝐴 ) |
| 17 | 6 16 | sylbir | ⊢ ( ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
| 18 | 5 17 | sylbir | ⊢ ( ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
| 19 | 18 | con3i | ⊢ ( ¬ 𝐵 ⊆ 𝐴 → ¬ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |
| 20 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ↔ ¬ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) | |
| 21 | 19 20 | sylibr | ⊢ ( ¬ 𝐵 ⊆ 𝐴 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |
| 22 | 3 21 | simplbiim | ⊢ ( 𝐴 ⊊ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |