This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the union of finite sets is less than or equal to the sum of their sizes. (Contributed by Mario Carneiro, 23-Sep-2013) (Proof shortened by Mario Carneiro, 27-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashun2 | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A u. B ) ) <_ ( ( # ` A ) + ( # ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undif2 | |- ( A u. ( B \ A ) ) = ( A u. B ) |
|
| 2 | 1 | fveq2i | |- ( # ` ( A u. ( B \ A ) ) ) = ( # ` ( A u. B ) ) |
| 3 | diffi | |- ( B e. Fin -> ( B \ A ) e. Fin ) |
|
| 4 | disjdif | |- ( A i^i ( B \ A ) ) = (/) |
|
| 5 | hashun | |- ( ( A e. Fin /\ ( B \ A ) e. Fin /\ ( A i^i ( B \ A ) ) = (/) ) -> ( # ` ( A u. ( B \ A ) ) ) = ( ( # ` A ) + ( # ` ( B \ A ) ) ) ) |
|
| 6 | 4 5 | mp3an3 | |- ( ( A e. Fin /\ ( B \ A ) e. Fin ) -> ( # ` ( A u. ( B \ A ) ) ) = ( ( # ` A ) + ( # ` ( B \ A ) ) ) ) |
| 7 | 3 6 | sylan2 | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A u. ( B \ A ) ) ) = ( ( # ` A ) + ( # ` ( B \ A ) ) ) ) |
| 8 | 2 7 | eqtr3id | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A u. B ) ) = ( ( # ` A ) + ( # ` ( B \ A ) ) ) ) |
| 9 | 3 | adantl | |- ( ( A e. Fin /\ B e. Fin ) -> ( B \ A ) e. Fin ) |
| 10 | hashcl | |- ( ( B \ A ) e. Fin -> ( # ` ( B \ A ) ) e. NN0 ) |
|
| 11 | 9 10 | syl | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( B \ A ) ) e. NN0 ) |
| 12 | 11 | nn0red | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( B \ A ) ) e. RR ) |
| 13 | hashcl | |- ( B e. Fin -> ( # ` B ) e. NN0 ) |
|
| 14 | 13 | adantl | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` B ) e. NN0 ) |
| 15 | 14 | nn0red | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` B ) e. RR ) |
| 16 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 17 | 16 | adantr | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` A ) e. NN0 ) |
| 18 | 17 | nn0red | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` A ) e. RR ) |
| 19 | simpr | |- ( ( A e. Fin /\ B e. Fin ) -> B e. Fin ) |
|
| 20 | difss | |- ( B \ A ) C_ B |
|
| 21 | ssdomg | |- ( B e. Fin -> ( ( B \ A ) C_ B -> ( B \ A ) ~<_ B ) ) |
|
| 22 | 19 20 21 | mpisyl | |- ( ( A e. Fin /\ B e. Fin ) -> ( B \ A ) ~<_ B ) |
| 23 | hashdom | |- ( ( ( B \ A ) e. Fin /\ B e. Fin ) -> ( ( # ` ( B \ A ) ) <_ ( # ` B ) <-> ( B \ A ) ~<_ B ) ) |
|
| 24 | 9 23 | sylancom | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` ( B \ A ) ) <_ ( # ` B ) <-> ( B \ A ) ~<_ B ) ) |
| 25 | 22 24 | mpbird | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( B \ A ) ) <_ ( # ` B ) ) |
| 26 | 12 15 18 25 | leadd2dd | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) + ( # ` ( B \ A ) ) ) <_ ( ( # ` A ) + ( # ` B ) ) ) |
| 27 | 8 26 | eqbrtrd | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A u. B ) ) <_ ( ( # ` A ) + ( # ` B ) ) ) |