This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Get an upper bound on a concretely specified finite set. Transfer boundedness to a subset. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashsslei.b | |- B C_ A |
|
| hashsslei.a | |- ( A e. Fin /\ ( # ` A ) <_ N ) |
||
| hashsslei.n | |- N e. NN0 |
||
| Assertion | hashsslei | |- ( B e. Fin /\ ( # ` B ) <_ N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashsslei.b | |- B C_ A |
|
| 2 | hashsslei.a | |- ( A e. Fin /\ ( # ` A ) <_ N ) |
|
| 3 | hashsslei.n | |- N e. NN0 |
|
| 4 | 2 | simpli | |- A e. Fin |
| 5 | ssfi | |- ( ( A e. Fin /\ B C_ A ) -> B e. Fin ) |
|
| 6 | 4 1 5 | mp2an | |- B e. Fin |
| 7 | ssdomg | |- ( A e. Fin -> ( B C_ A -> B ~<_ A ) ) |
|
| 8 | 4 1 7 | mp2 | |- B ~<_ A |
| 9 | hashdom | |- ( ( B e. Fin /\ A e. Fin ) -> ( ( # ` B ) <_ ( # ` A ) <-> B ~<_ A ) ) |
|
| 10 | 6 4 9 | mp2an | |- ( ( # ` B ) <_ ( # ` A ) <-> B ~<_ A ) |
| 11 | 8 10 | mpbir | |- ( # ` B ) <_ ( # ` A ) |
| 12 | 2 | simpri | |- ( # ` A ) <_ N |
| 13 | hashcl | |- ( B e. Fin -> ( # ` B ) e. NN0 ) |
|
| 14 | 6 13 | ax-mp | |- ( # ` B ) e. NN0 |
| 15 | 14 | nn0rei | |- ( # ` B ) e. RR |
| 16 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 17 | 4 16 | ax-mp | |- ( # ` A ) e. NN0 |
| 18 | 17 | nn0rei | |- ( # ` A ) e. RR |
| 19 | 3 | nn0rei | |- N e. RR |
| 20 | 15 18 19 | letri | |- ( ( ( # ` B ) <_ ( # ` A ) /\ ( # ` A ) <_ N ) -> ( # ` B ) <_ N ) |
| 21 | 11 12 20 | mp2an | |- ( # ` B ) <_ N |
| 22 | 6 21 | pm3.2i | |- ( B e. Fin /\ ( # ` B ) <_ N ) |