This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashss | |- ( ( A e. V /\ B C_ A ) -> ( # ` B ) <_ ( # ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdomg | |- ( A e. Fin -> ( B C_ A -> B ~<_ A ) ) |
|
| 2 | 1 | com12 | |- ( B C_ A -> ( A e. Fin -> B ~<_ A ) ) |
| 3 | 2 | adantl | |- ( ( A e. V /\ B C_ A ) -> ( A e. Fin -> B ~<_ A ) ) |
| 4 | 3 | impcom | |- ( ( A e. Fin /\ ( A e. V /\ B C_ A ) ) -> B ~<_ A ) |
| 5 | ssfi | |- ( ( A e. Fin /\ B C_ A ) -> B e. Fin ) |
|
| 6 | 5 | adantrl | |- ( ( A e. Fin /\ ( A e. V /\ B C_ A ) ) -> B e. Fin ) |
| 7 | simpl | |- ( ( A e. Fin /\ ( A e. V /\ B C_ A ) ) -> A e. Fin ) |
|
| 8 | hashdom | |- ( ( B e. Fin /\ A e. Fin ) -> ( ( # ` B ) <_ ( # ` A ) <-> B ~<_ A ) ) |
|
| 9 | 6 7 8 | syl2anc | |- ( ( A e. Fin /\ ( A e. V /\ B C_ A ) ) -> ( ( # ` B ) <_ ( # ` A ) <-> B ~<_ A ) ) |
| 10 | 4 9 | mpbird | |- ( ( A e. Fin /\ ( A e. V /\ B C_ A ) ) -> ( # ` B ) <_ ( # ` A ) ) |
| 11 | 10 | ex | |- ( A e. Fin -> ( ( A e. V /\ B C_ A ) -> ( # ` B ) <_ ( # ` A ) ) ) |
| 12 | hashinf | |- ( ( A e. V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
|
| 13 | ssexg | |- ( ( B C_ A /\ A e. V ) -> B e. _V ) |
|
| 14 | 13 | ancoms | |- ( ( A e. V /\ B C_ A ) -> B e. _V ) |
| 15 | hashxrcl | |- ( B e. _V -> ( # ` B ) e. RR* ) |
|
| 16 | pnfge | |- ( ( # ` B ) e. RR* -> ( # ` B ) <_ +oo ) |
|
| 17 | 14 15 16 | 3syl | |- ( ( A e. V /\ B C_ A ) -> ( # ` B ) <_ +oo ) |
| 18 | 17 | ex | |- ( A e. V -> ( B C_ A -> ( # ` B ) <_ +oo ) ) |
| 19 | 18 | adantl | |- ( ( ( # ` A ) = +oo /\ A e. V ) -> ( B C_ A -> ( # ` B ) <_ +oo ) ) |
| 20 | breq2 | |- ( ( # ` A ) = +oo -> ( ( # ` B ) <_ ( # ` A ) <-> ( # ` B ) <_ +oo ) ) |
|
| 21 | 20 | adantr | |- ( ( ( # ` A ) = +oo /\ A e. V ) -> ( ( # ` B ) <_ ( # ` A ) <-> ( # ` B ) <_ +oo ) ) |
| 22 | 19 21 | sylibrd | |- ( ( ( # ` A ) = +oo /\ A e. V ) -> ( B C_ A -> ( # ` B ) <_ ( # ` A ) ) ) |
| 23 | 22 | expcom | |- ( A e. V -> ( ( # ` A ) = +oo -> ( B C_ A -> ( # ` B ) <_ ( # ` A ) ) ) ) |
| 24 | 23 | adantr | |- ( ( A e. V /\ -. A e. Fin ) -> ( ( # ` A ) = +oo -> ( B C_ A -> ( # ` B ) <_ ( # ` A ) ) ) ) |
| 25 | 12 24 | mpd | |- ( ( A e. V /\ -. A e. Fin ) -> ( B C_ A -> ( # ` B ) <_ ( # ` A ) ) ) |
| 26 | 25 | impancom | |- ( ( A e. V /\ B C_ A ) -> ( -. A e. Fin -> ( # ` B ) <_ ( # ` A ) ) ) |
| 27 | 26 | com12 | |- ( -. A e. Fin -> ( ( A e. V /\ B C_ A ) -> ( # ` B ) <_ ( # ` A ) ) ) |
| 28 | 11 27 | pm2.61i | |- ( ( A e. V /\ B C_ A ) -> ( # ` B ) <_ ( # ` A ) ) |