This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of elements of a finite function expressed by a restriction. (Contributed by AV, 15-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashreshashfun | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ♯ ‘ 𝐴 ) = ( ( ♯ ‘ ( 𝐴 ↾ 𝐵 ) ) + ( ♯ ‘ ( dom 𝐴 ∖ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → Fun 𝐴 ) | |
| 2 | hashfun | ⊢ ( 𝐴 ∈ Fin → ( Fun 𝐴 ↔ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ dom 𝐴 ) ) ) | |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( Fun 𝐴 ↔ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ dom 𝐴 ) ) ) |
| 4 | 1 3 | mpbid | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ dom 𝐴 ) ) |
| 5 | dmfi | ⊢ ( 𝐴 ∈ Fin → dom 𝐴 ∈ Fin ) | |
| 6 | 5 | anim1i | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) ) |
| 7 | 6 | 3adant1 | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) ) |
| 8 | hashssdif | ⊢ ( ( dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ♯ ‘ ( dom 𝐴 ∖ 𝐵 ) ) = ( ( ♯ ‘ dom 𝐴 ) − ( ♯ ‘ 𝐵 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ♯ ‘ ( dom 𝐴 ∖ 𝐵 ) ) = ( ( ♯ ‘ dom 𝐴 ) − ( ♯ ‘ 𝐵 ) ) ) |
| 10 | 9 | oveq2d | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( dom 𝐴 ∖ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐵 ) + ( ( ♯ ‘ dom 𝐴 ) − ( ♯ ‘ 𝐵 ) ) ) ) |
| 11 | ssfi | ⊢ ( ( dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → 𝐵 ∈ Fin ) | |
| 12 | 11 | ex | ⊢ ( dom 𝐴 ∈ Fin → ( 𝐵 ⊆ dom 𝐴 → 𝐵 ∈ Fin ) ) |
| 13 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 14 | 13 | nn0cnd | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 15 | 12 14 | syl6 | ⊢ ( dom 𝐴 ∈ Fin → ( 𝐵 ⊆ dom 𝐴 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) ) |
| 16 | 5 15 | syl | ⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊆ dom 𝐴 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) ) |
| 17 | 16 | imp | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 18 | hashcl | ⊢ ( dom 𝐴 ∈ Fin → ( ♯ ‘ dom 𝐴 ) ∈ ℕ0 ) | |
| 19 | 5 18 | syl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ dom 𝐴 ) ∈ ℕ0 ) |
| 20 | 19 | nn0cnd | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ dom 𝐴 ) ∈ ℂ ) |
| 21 | 20 | adantr | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ♯ ‘ dom 𝐴 ) ∈ ℂ ) |
| 22 | 17 21 | jca | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ( ♯ ‘ 𝐵 ) ∈ ℂ ∧ ( ♯ ‘ dom 𝐴 ) ∈ ℂ ) ) |
| 23 | 22 | 3adant1 | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ( ♯ ‘ 𝐵 ) ∈ ℂ ∧ ( ♯ ‘ dom 𝐴 ) ∈ ℂ ) ) |
| 24 | pncan3 | ⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℂ ∧ ( ♯ ‘ dom 𝐴 ) ∈ ℂ ) → ( ( ♯ ‘ 𝐵 ) + ( ( ♯ ‘ dom 𝐴 ) − ( ♯ ‘ 𝐵 ) ) ) = ( ♯ ‘ dom 𝐴 ) ) | |
| 25 | 23 24 | syl | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ( ♯ ‘ 𝐵 ) + ( ( ♯ ‘ dom 𝐴 ) − ( ♯ ‘ 𝐵 ) ) ) = ( ♯ ‘ dom 𝐴 ) ) |
| 26 | 10 25 | eqtr2d | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ♯ ‘ dom 𝐴 ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( dom 𝐴 ∖ 𝐵 ) ) ) ) |
| 27 | hashres | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ♯ ‘ ( 𝐴 ↾ 𝐵 ) ) = ( ♯ ‘ 𝐵 ) ) | |
| 28 | 27 | eqcomd | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ( 𝐴 ↾ 𝐵 ) ) ) |
| 29 | 28 | oveq1d | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( dom 𝐴 ∖ 𝐵 ) ) ) = ( ( ♯ ‘ ( 𝐴 ↾ 𝐵 ) ) + ( ♯ ‘ ( dom 𝐴 ∖ 𝐵 ) ) ) ) |
| 30 | 4 26 29 | 3eqtrd | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ♯ ‘ 𝐴 ) = ( ( ♯ ‘ ( 𝐴 ↾ 𝐵 ) ) + ( ♯ ‘ ( dom 𝐴 ∖ 𝐵 ) ) ) ) |