This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of elements of a finite function expressed by a restriction. (Contributed by AV, 15-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashreshashfun | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` A ) = ( ( # ` ( A |` B ) ) + ( # ` ( dom A \ B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> Fun A ) |
|
| 2 | hashfun | |- ( A e. Fin -> ( Fun A <-> ( # ` A ) = ( # ` dom A ) ) ) |
|
| 3 | 2 | 3ad2ant2 | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( Fun A <-> ( # ` A ) = ( # ` dom A ) ) ) |
| 4 | 1 3 | mpbid | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` A ) = ( # ` dom A ) ) |
| 5 | dmfi | |- ( A e. Fin -> dom A e. Fin ) |
|
| 6 | 5 | anim1i | |- ( ( A e. Fin /\ B C_ dom A ) -> ( dom A e. Fin /\ B C_ dom A ) ) |
| 7 | 6 | 3adant1 | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( dom A e. Fin /\ B C_ dom A ) ) |
| 8 | hashssdif | |- ( ( dom A e. Fin /\ B C_ dom A ) -> ( # ` ( dom A \ B ) ) = ( ( # ` dom A ) - ( # ` B ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` ( dom A \ B ) ) = ( ( # ` dom A ) - ( # ` B ) ) ) |
| 10 | 9 | oveq2d | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( ( # ` B ) + ( # ` ( dom A \ B ) ) ) = ( ( # ` B ) + ( ( # ` dom A ) - ( # ` B ) ) ) ) |
| 11 | ssfi | |- ( ( dom A e. Fin /\ B C_ dom A ) -> B e. Fin ) |
|
| 12 | 11 | ex | |- ( dom A e. Fin -> ( B C_ dom A -> B e. Fin ) ) |
| 13 | hashcl | |- ( B e. Fin -> ( # ` B ) e. NN0 ) |
|
| 14 | 13 | nn0cnd | |- ( B e. Fin -> ( # ` B ) e. CC ) |
| 15 | 12 14 | syl6 | |- ( dom A e. Fin -> ( B C_ dom A -> ( # ` B ) e. CC ) ) |
| 16 | 5 15 | syl | |- ( A e. Fin -> ( B C_ dom A -> ( # ` B ) e. CC ) ) |
| 17 | 16 | imp | |- ( ( A e. Fin /\ B C_ dom A ) -> ( # ` B ) e. CC ) |
| 18 | hashcl | |- ( dom A e. Fin -> ( # ` dom A ) e. NN0 ) |
|
| 19 | 5 18 | syl | |- ( A e. Fin -> ( # ` dom A ) e. NN0 ) |
| 20 | 19 | nn0cnd | |- ( A e. Fin -> ( # ` dom A ) e. CC ) |
| 21 | 20 | adantr | |- ( ( A e. Fin /\ B C_ dom A ) -> ( # ` dom A ) e. CC ) |
| 22 | 17 21 | jca | |- ( ( A e. Fin /\ B C_ dom A ) -> ( ( # ` B ) e. CC /\ ( # ` dom A ) e. CC ) ) |
| 23 | 22 | 3adant1 | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( ( # ` B ) e. CC /\ ( # ` dom A ) e. CC ) ) |
| 24 | pncan3 | |- ( ( ( # ` B ) e. CC /\ ( # ` dom A ) e. CC ) -> ( ( # ` B ) + ( ( # ` dom A ) - ( # ` B ) ) ) = ( # ` dom A ) ) |
|
| 25 | 23 24 | syl | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( ( # ` B ) + ( ( # ` dom A ) - ( # ` B ) ) ) = ( # ` dom A ) ) |
| 26 | 10 25 | eqtr2d | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` dom A ) = ( ( # ` B ) + ( # ` ( dom A \ B ) ) ) ) |
| 27 | hashres | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` ( A |` B ) ) = ( # ` B ) ) |
|
| 28 | 27 | eqcomd | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` B ) = ( # ` ( A |` B ) ) ) |
| 29 | 28 | oveq1d | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( ( # ` B ) + ( # ` ( dom A \ B ) ) ) = ( ( # ` ( A |` B ) ) + ( # ` ( dom A \ B ) ) ) ) |
| 30 | 4 26 29 | 3eqtrd | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` A ) = ( ( # ` ( A |` B ) ) + ( # ` ( dom A \ B ) ) ) ) |