This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a restricted class abstraction restricted to a singleton is either 0 or 1. (Contributed by Alexander van der Vekens, 3-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashrabsn01 | ⊢ ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } | |
| 2 | rabrsn | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } → ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ ∨ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) ) | |
| 3 | fveqeq2 | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 𝑁 ↔ ( ♯ ‘ ∅ ) = 𝑁 ) ) | |
| 4 | eqcom | ⊢ ( ( ♯ ‘ ∅ ) = 𝑁 ↔ 𝑁 = ( ♯ ‘ ∅ ) ) | |
| 5 | 4 | biimpi | ⊢ ( ( ♯ ‘ ∅ ) = 𝑁 → 𝑁 = ( ♯ ‘ ∅ ) ) |
| 6 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 7 | 5 6 | eqtrdi | ⊢ ( ( ♯ ‘ ∅ ) = 𝑁 → 𝑁 = 0 ) |
| 8 | 7 | orcd | ⊢ ( ( ♯ ‘ ∅ ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
| 9 | 3 8 | biimtrdi | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 10 | fveqeq2 | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 𝑁 ↔ ( ♯ ‘ { 𝐴 } ) = 𝑁 ) ) | |
| 11 | eqcom | ⊢ ( ( ♯ ‘ { 𝐴 } ) = 𝑁 ↔ 𝑁 = ( ♯ ‘ { 𝐴 } ) ) | |
| 12 | 11 | biimpi | ⊢ ( ( ♯ ‘ { 𝐴 } ) = 𝑁 → 𝑁 = ( ♯ ‘ { 𝐴 } ) ) |
| 13 | hashsng | ⊢ ( 𝐴 ∈ V → ( ♯ ‘ { 𝐴 } ) = 1 ) | |
| 14 | 12 13 | sylan9eqr | ⊢ ( ( 𝐴 ∈ V ∧ ( ♯ ‘ { 𝐴 } ) = 𝑁 ) → 𝑁 = 1 ) |
| 15 | 14 | olcd | ⊢ ( ( 𝐴 ∈ V ∧ ( ♯ ‘ { 𝐴 } ) = 𝑁 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
| 16 | 15 | ex | ⊢ ( 𝐴 ∈ V → ( ( ♯ ‘ { 𝐴 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 17 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 18 | fveqeq2 | ⊢ ( { 𝐴 } = ∅ → ( ( ♯ ‘ { 𝐴 } ) = 𝑁 ↔ ( ♯ ‘ ∅ ) = 𝑁 ) ) | |
| 19 | 18 8 | biimtrdi | ⊢ ( { 𝐴 } = ∅ → ( ( ♯ ‘ { 𝐴 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 20 | 17 19 | sylbi | ⊢ ( ¬ 𝐴 ∈ V → ( ( ♯ ‘ { 𝐴 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 21 | 16 20 | pm2.61i | ⊢ ( ( ♯ ‘ { 𝐴 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
| 22 | 10 21 | biimtrdi | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 23 | 9 22 | jaoi | ⊢ ( ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ ∨ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 24 | 1 2 23 | mp2b | ⊢ ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |