This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by Alexander van der Vekens, 22-Dec-2017) (Proof shortened by AV, 21-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabrsn | ⊢ ( 𝑀 = { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } → ( 𝑀 = ∅ ∨ 𝑀 = { 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabsnifsb | ⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) | |
| 2 | 1 | eqeq2i | ⊢ ( 𝑀 = { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ↔ 𝑀 = if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) ) |
| 3 | ifeqor | ⊢ ( if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = { 𝐴 } ∨ if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = ∅ ) | |
| 4 | orcom | ⊢ ( ( if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = { 𝐴 } ∨ if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = ∅ ) ↔ ( if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = ∅ ∨ if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = { 𝐴 } ) ) | |
| 5 | 3 4 | mpbi | ⊢ ( if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = ∅ ∨ if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = { 𝐴 } ) |
| 6 | eqeq1 | ⊢ ( 𝑀 = if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) → ( 𝑀 = ∅ ↔ if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = ∅ ) ) | |
| 7 | eqeq1 | ⊢ ( 𝑀 = if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) → ( 𝑀 = { 𝐴 } ↔ if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = { 𝐴 } ) ) | |
| 8 | 6 7 | orbi12d | ⊢ ( 𝑀 = if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) → ( ( 𝑀 = ∅ ∨ 𝑀 = { 𝐴 } ) ↔ ( if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = ∅ ∨ if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = { 𝐴 } ) ) ) |
| 9 | 5 8 | mpbiri | ⊢ ( 𝑀 = if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) → ( 𝑀 = ∅ ∨ 𝑀 = { 𝐴 } ) ) |
| 10 | 2 9 | sylbi | ⊢ ( 𝑀 = { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } → ( 𝑀 = ∅ ∨ 𝑀 = { 𝐴 } ) ) |