This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the size of a restricted class abstraction restricted to a singleton is 1, the condition of the class abstraction must hold for the singleton. (Contributed by Alexander van der Vekens, 3-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashrabsn1 | ⊢ ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } | |
| 2 | rabrsn | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } → ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ ∨ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) ) | |
| 3 | fveqeq2 | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 ↔ ( ♯ ‘ ∅ ) = 1 ) ) | |
| 4 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 5 | 4 | eqeq1i | ⊢ ( ( ♯ ‘ ∅ ) = 1 ↔ 0 = 1 ) |
| 6 | 0ne1 | ⊢ 0 ≠ 1 | |
| 7 | eqneqall | ⊢ ( 0 = 1 → ( 0 ≠ 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 8 | 6 7 | mpi | ⊢ ( 0 = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) |
| 9 | 5 8 | sylbi | ⊢ ( ( ♯ ‘ ∅ ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) |
| 10 | 3 9 | biimtrdi | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 11 | snidg | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ { 𝐴 } ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ V ∧ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) → 𝐴 ∈ { 𝐴 } ) |
| 13 | eleq2 | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( 𝐴 ∈ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ↔ 𝐴 ∈ { 𝐴 } ) ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝐴 ∈ V ∧ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) → ( 𝐴 ∈ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ↔ 𝐴 ∈ { 𝐴 } ) ) |
| 15 | 12 14 | mpbird | ⊢ ( ( 𝐴 ∈ V ∧ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) → 𝐴 ∈ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) |
| 16 | nfcv | ⊢ Ⅎ 𝑥 { 𝐴 } | |
| 17 | 16 | elrabsf | ⊢ ( 𝐴 ∈ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ↔ ( 𝐴 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 18 | 17 | simprbi | ⊢ ( 𝐴 ∈ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } → [ 𝐴 / 𝑥 ] 𝜑 ) |
| 19 | 15 18 | syl | ⊢ ( ( 𝐴 ∈ V ∧ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) → [ 𝐴 / 𝑥 ] 𝜑 ) |
| 20 | 19 | a1d | ⊢ ( ( 𝐴 ∈ V ∧ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 21 | 20 | ex | ⊢ ( 𝐴 ∈ V → ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 22 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 23 | eqeq2 | ⊢ ( { 𝐴 } = ∅ → ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ↔ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ ) ) | |
| 24 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 25 | eqneqall | ⊢ ( 1 = 0 → ( 1 ≠ 0 → [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 26 | 24 25 | mpi | ⊢ ( 1 = 0 → [ 𝐴 / 𝑥 ] 𝜑 ) |
| 27 | 26 | eqcoms | ⊢ ( 0 = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) |
| 28 | 5 27 | sylbi | ⊢ ( ( ♯ ‘ ∅ ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) |
| 29 | 3 28 | biimtrdi | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 30 | 23 29 | biimtrdi | ⊢ ( { 𝐴 } = ∅ → ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 31 | 22 30 | sylbi | ⊢ ( ¬ 𝐴 ∈ V → ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 32 | 21 31 | pm2.61i | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 33 | 10 32 | jaoi | ⊢ ( ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ ∨ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 34 | 1 2 33 | mp2b | ⊢ ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) |