This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a restricted class abstraction restricted to a singleton is either 0 or 1. (Contributed by Alexander van der Vekens, 3-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashrabsn01 | |- ( ( # ` { x e. { A } | ph } ) = N -> ( N = 0 \/ N = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- { x e. { A } | ph } = { x e. { A } | ph } |
|
| 2 | rabrsn | |- ( { x e. { A } | ph } = { x e. { A } | ph } -> ( { x e. { A } | ph } = (/) \/ { x e. { A } | ph } = { A } ) ) |
|
| 3 | fveqeq2 | |- ( { x e. { A } | ph } = (/) -> ( ( # ` { x e. { A } | ph } ) = N <-> ( # ` (/) ) = N ) ) |
|
| 4 | eqcom | |- ( ( # ` (/) ) = N <-> N = ( # ` (/) ) ) |
|
| 5 | 4 | biimpi | |- ( ( # ` (/) ) = N -> N = ( # ` (/) ) ) |
| 6 | hash0 | |- ( # ` (/) ) = 0 |
|
| 7 | 5 6 | eqtrdi | |- ( ( # ` (/) ) = N -> N = 0 ) |
| 8 | 7 | orcd | |- ( ( # ` (/) ) = N -> ( N = 0 \/ N = 1 ) ) |
| 9 | 3 8 | biimtrdi | |- ( { x e. { A } | ph } = (/) -> ( ( # ` { x e. { A } | ph } ) = N -> ( N = 0 \/ N = 1 ) ) ) |
| 10 | fveqeq2 | |- ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = N <-> ( # ` { A } ) = N ) ) |
|
| 11 | eqcom | |- ( ( # ` { A } ) = N <-> N = ( # ` { A } ) ) |
|
| 12 | 11 | biimpi | |- ( ( # ` { A } ) = N -> N = ( # ` { A } ) ) |
| 13 | hashsng | |- ( A e. _V -> ( # ` { A } ) = 1 ) |
|
| 14 | 12 13 | sylan9eqr | |- ( ( A e. _V /\ ( # ` { A } ) = N ) -> N = 1 ) |
| 15 | 14 | olcd | |- ( ( A e. _V /\ ( # ` { A } ) = N ) -> ( N = 0 \/ N = 1 ) ) |
| 16 | 15 | ex | |- ( A e. _V -> ( ( # ` { A } ) = N -> ( N = 0 \/ N = 1 ) ) ) |
| 17 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 18 | fveqeq2 | |- ( { A } = (/) -> ( ( # ` { A } ) = N <-> ( # ` (/) ) = N ) ) |
|
| 19 | 18 8 | biimtrdi | |- ( { A } = (/) -> ( ( # ` { A } ) = N -> ( N = 0 \/ N = 1 ) ) ) |
| 20 | 17 19 | sylbi | |- ( -. A e. _V -> ( ( # ` { A } ) = N -> ( N = 0 \/ N = 1 ) ) ) |
| 21 | 16 20 | pm2.61i | |- ( ( # ` { A } ) = N -> ( N = 0 \/ N = 1 ) ) |
| 22 | 10 21 | biimtrdi | |- ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = N -> ( N = 0 \/ N = 1 ) ) ) |
| 23 | 9 22 | jaoi | |- ( ( { x e. { A } | ph } = (/) \/ { x e. { A } | ph } = { A } ) -> ( ( # ` { x e. { A } | ph } ) = N -> ( N = 0 \/ N = 1 ) ) ) |
| 24 | 1 2 23 | mp2b | |- ( ( # ` { x e. { A } | ph } ) = N -> ( N = 0 \/ N = 1 ) ) |