This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elprchashprn2 | ⊢ ( ¬ 𝑀 ∈ V → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prprc1 | ⊢ ( ¬ 𝑀 ∈ V → { 𝑀 , 𝑁 } = { 𝑁 } ) | |
| 2 | hashsng | ⊢ ( 𝑁 ∈ V → ( ♯ ‘ { 𝑁 } ) = 1 ) | |
| 3 | fveq2 | ⊢ ( { 𝑀 , 𝑁 } = { 𝑁 } → ( ♯ ‘ { 𝑀 , 𝑁 } ) = ( ♯ ‘ { 𝑁 } ) ) | |
| 4 | 3 | eqcomd | ⊢ ( { 𝑀 , 𝑁 } = { 𝑁 } → ( ♯ ‘ { 𝑁 } ) = ( ♯ ‘ { 𝑀 , 𝑁 } ) ) |
| 5 | 4 | eqeq1d | ⊢ ( { 𝑀 , 𝑁 } = { 𝑁 } → ( ( ♯ ‘ { 𝑁 } ) = 1 ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 1 ) ) |
| 6 | 5 | biimpa | ⊢ ( ( { 𝑀 , 𝑁 } = { 𝑁 } ∧ ( ♯ ‘ { 𝑁 } ) = 1 ) → ( ♯ ‘ { 𝑀 , 𝑁 } ) = 1 ) |
| 7 | id | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 1 → ( ♯ ‘ { 𝑀 , 𝑁 } ) = 1 ) | |
| 8 | 1ne2 | ⊢ 1 ≠ 2 | |
| 9 | 8 | a1i | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 1 → 1 ≠ 2 ) |
| 10 | 7 9 | eqnetrd | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 1 → ( ♯ ‘ { 𝑀 , 𝑁 } ) ≠ 2 ) |
| 11 | 10 | neneqd | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 1 → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
| 12 | 6 11 | syl | ⊢ ( ( { 𝑀 , 𝑁 } = { 𝑁 } ∧ ( ♯ ‘ { 𝑁 } ) = 1 ) → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
| 13 | 12 | expcom | ⊢ ( ( ♯ ‘ { 𝑁 } ) = 1 → ( { 𝑀 , 𝑁 } = { 𝑁 } → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
| 14 | 2 13 | syl | ⊢ ( 𝑁 ∈ V → ( { 𝑀 , 𝑁 } = { 𝑁 } → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
| 15 | snprc | ⊢ ( ¬ 𝑁 ∈ V ↔ { 𝑁 } = ∅ ) | |
| 16 | eqeq2 | ⊢ ( { 𝑁 } = ∅ → ( { 𝑀 , 𝑁 } = { 𝑁 } ↔ { 𝑀 , 𝑁 } = ∅ ) ) | |
| 17 | 16 | biimpa | ⊢ ( ( { 𝑁 } = ∅ ∧ { 𝑀 , 𝑁 } = { 𝑁 } ) → { 𝑀 , 𝑁 } = ∅ ) |
| 18 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 19 | fveq2 | ⊢ ( { 𝑀 , 𝑁 } = ∅ → ( ♯ ‘ { 𝑀 , 𝑁 } ) = ( ♯ ‘ ∅ ) ) | |
| 20 | 19 | eqcomd | ⊢ ( { 𝑀 , 𝑁 } = ∅ → ( ♯ ‘ ∅ ) = ( ♯ ‘ { 𝑀 , 𝑁 } ) ) |
| 21 | 20 | eqeq1d | ⊢ ( { 𝑀 , 𝑁 } = ∅ → ( ( ♯ ‘ ∅ ) = 0 ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 0 ) ) |
| 22 | 21 | biimpa | ⊢ ( ( { 𝑀 , 𝑁 } = ∅ ∧ ( ♯ ‘ ∅ ) = 0 ) → ( ♯ ‘ { 𝑀 , 𝑁 } ) = 0 ) |
| 23 | id | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 0 → ( ♯ ‘ { 𝑀 , 𝑁 } ) = 0 ) | |
| 24 | 0ne2 | ⊢ 0 ≠ 2 | |
| 25 | 24 | a1i | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 0 → 0 ≠ 2 ) |
| 26 | 23 25 | eqnetrd | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 0 → ( ♯ ‘ { 𝑀 , 𝑁 } ) ≠ 2 ) |
| 27 | 26 | neneqd | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 0 → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
| 28 | 22 27 | syl | ⊢ ( ( { 𝑀 , 𝑁 } = ∅ ∧ ( ♯ ‘ ∅ ) = 0 ) → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
| 29 | 17 18 28 | sylancl | ⊢ ( ( { 𝑁 } = ∅ ∧ { 𝑀 , 𝑁 } = { 𝑁 } ) → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
| 30 | 29 | ex | ⊢ ( { 𝑁 } = ∅ → ( { 𝑀 , 𝑁 } = { 𝑁 } → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
| 31 | 15 30 | sylbi | ⊢ ( ¬ 𝑁 ∈ V → ( { 𝑀 , 𝑁 } = { 𝑁 } → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
| 32 | 14 31 | pm2.61i | ⊢ ( { 𝑀 , 𝑁 } = { 𝑁 } → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
| 33 | 1 32 | syl | ⊢ ( ¬ 𝑀 ∈ V → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |