This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a nonempty set is greater than zero. (Contributed by Thierry Arnoux, 2-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashgt0 | |- ( ( A e. V /\ A =/= (/) ) -> 0 < ( # ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashge0 | |- ( A e. V -> 0 <_ ( # ` A ) ) |
|
| 2 | 1 | adantr | |- ( ( A e. V /\ A =/= (/) ) -> 0 <_ ( # ` A ) ) |
| 3 | hasheq0 | |- ( A e. V -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
|
| 4 | 3 | necon3bid | |- ( A e. V -> ( ( # ` A ) =/= 0 <-> A =/= (/) ) ) |
| 5 | 4 | biimpar | |- ( ( A e. V /\ A =/= (/) ) -> ( # ` A ) =/= 0 ) |
| 6 | 2 5 | jca | |- ( ( A e. V /\ A =/= (/) ) -> ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) |
| 7 | 0xr | |- 0 e. RR* |
|
| 8 | hashxrcl | |- ( A e. V -> ( # ` A ) e. RR* ) |
|
| 9 | xrltlen | |- ( ( 0 e. RR* /\ ( # ` A ) e. RR* ) -> ( 0 < ( # ` A ) <-> ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) ) |
|
| 10 | 7 8 9 | sylancr | |- ( A e. V -> ( 0 < ( # ` A ) <-> ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) ) |
| 11 | 10 | biimpar | |- ( ( A e. V /\ ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) -> 0 < ( # ` A ) ) |
| 12 | 6 11 | syldan | |- ( ( A e. V /\ A =/= (/) ) -> 0 < ( # ` A ) ) |