This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The ` # ` (set size) function
hashdifsn
Metamath Proof Explorer
Description: The size of the difference of a finite set and a singleton subset is the
set's size minus 1. (Contributed by Alexander van der Vekens , 6-Jan-2018)
Ref
Expression
Assertion
hashdifsn
⊢ A ∈ Fin ∧ B ∈ A → A ∖ B = A − 1
Proof
Step
Hyp
Ref
Expression
1
snssi
⊢ B ∈ A → B ⊆ A
2
hashssdif
⊢ A ∈ Fin ∧ B ⊆ A → A ∖ B = A − B
3
1 2
sylan2
⊢ A ∈ Fin ∧ B ∈ A → A ∖ B = A − B
4
hashsng
⊢ B ∈ A → B = 1
5
4
adantl
⊢ A ∈ Fin ∧ B ∈ A → B = 1
6
5
oveq2d
⊢ A ∈ Fin ∧ B ∈ A → A − B = A − 1
7
3 6
eqtrd
⊢ A ∈ Fin ∧ B ∈ A → A ∖ B = A − 1