This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of elements in a class abstraction with a restricted existential quantification. (Contributed by Alexander van der Vekens, 29-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashrabrex.1 | ⊢ ( 𝜑 → 𝑌 ∈ Fin ) | |
| hashrabrex.2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → { 𝑥 ∈ 𝑋 ∣ 𝜓 } ∈ Fin ) | ||
| hashrabrex.3 | ⊢ ( 𝜑 → Disj 𝑦 ∈ 𝑌 { 𝑥 ∈ 𝑋 ∣ 𝜓 } ) | ||
| Assertion | hashrabrex | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑌 𝜓 } ) = Σ 𝑦 ∈ 𝑌 ( ♯ ‘ { 𝑥 ∈ 𝑋 ∣ 𝜓 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashrabrex.1 | ⊢ ( 𝜑 → 𝑌 ∈ Fin ) | |
| 2 | hashrabrex.2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → { 𝑥 ∈ 𝑋 ∣ 𝜓 } ∈ Fin ) | |
| 3 | hashrabrex.3 | ⊢ ( 𝜑 → Disj 𝑦 ∈ 𝑌 { 𝑥 ∈ 𝑋 ∣ 𝜓 } ) | |
| 4 | iunrab | ⊢ ∪ 𝑦 ∈ 𝑌 { 𝑥 ∈ 𝑋 ∣ 𝜓 } = { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑌 𝜓 } | |
| 5 | 4 | eqcomi | ⊢ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑌 𝜓 } = ∪ 𝑦 ∈ 𝑌 { 𝑥 ∈ 𝑋 ∣ 𝜓 } |
| 6 | 5 | fveq2i | ⊢ ( ♯ ‘ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑌 𝜓 } ) = ( ♯ ‘ ∪ 𝑦 ∈ 𝑌 { 𝑥 ∈ 𝑋 ∣ 𝜓 } ) |
| 7 | 1 2 3 | hashiun | ⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑦 ∈ 𝑌 { 𝑥 ∈ 𝑋 ∣ 𝜓 } ) = Σ 𝑦 ∈ 𝑌 ( ♯ ‘ { 𝑥 ∈ 𝑋 ∣ 𝜓 } ) ) |
| 8 | 6 7 | eqtrid | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑌 𝜓 } ) = Σ 𝑦 ∈ 𝑌 ( ♯ ‘ { 𝑥 ∈ 𝑋 ∣ 𝜓 } ) ) |