This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 13-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | h2hc.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| h2hc.2 | ⊢ 𝑈 ∈ NrmCVec | ||
| h2hc.3 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | ||
| h2hc.4 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| Assertion | h2hcau | ⊢ Cauchy = ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h2hc.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | h2hc.2 | ⊢ 𝑈 ∈ NrmCVec | |
| 3 | h2hc.3 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | |
| 4 | h2hc.4 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 5 | df-rab | ⊢ { 𝑓 ∈ ( ℋ ↑m ℕ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 } = { 𝑓 ∣ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) } | |
| 6 | df-hcau | ⊢ Cauchy = { 𝑓 ∈ ( ℋ ↑m ℕ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 } | |
| 7 | elin | ⊢ ( 𝑓 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 ∈ ( ℋ ↑m ℕ ) ) ) | |
| 8 | ancom | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 ∈ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 𝑓 ∈ ( Cau ‘ 𝐷 ) ) ) | |
| 9 | 3 | hlex | ⊢ ℋ ∈ V |
| 10 | nnex | ⊢ ℕ ∈ V | |
| 11 | 9 10 | elmap | ⊢ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ℋ ) |
| 12 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 13 | 3 4 | imsxmet | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ ℋ ) ) |
| 14 | 2 13 | mp1i | ⊢ ( 𝑓 : ℕ ⟶ ℋ → 𝐷 ∈ ( ∞Met ‘ ℋ ) ) |
| 15 | 1zzd | ⊢ ( 𝑓 : ℕ ⟶ ℋ → 1 ∈ ℤ ) | |
| 16 | eqidd | ⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) | |
| 17 | eqidd | ⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑓 ‘ 𝑗 ) ) | |
| 18 | id | ⊢ ( 𝑓 : ℕ ⟶ ℋ → 𝑓 : ℕ ⟶ ℋ ) | |
| 19 | 12 14 15 16 17 18 | iscauf | ⊢ ( 𝑓 : ℕ ⟶ ℋ → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑗 ) 𝐷 ( 𝑓 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 20 | ffvelcdm | ⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) → ( 𝑓 ‘ 𝑗 ) ∈ ℋ ) | |
| 21 | 20 | adantr | ⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑓 ‘ 𝑗 ) ∈ ℋ ) |
| 22 | eluznn | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) | |
| 23 | ffvelcdm | ⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ℋ ) | |
| 24 | 22 23 | sylan2 | ⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ℋ ) |
| 25 | 24 | anassrs | ⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ℋ ) |
| 26 | 1 2 3 4 | h2hmetdval | ⊢ ( ( ( 𝑓 ‘ 𝑗 ) ∈ ℋ ∧ ( 𝑓 ‘ 𝑘 ) ∈ ℋ ) → ( ( 𝑓 ‘ 𝑗 ) 𝐷 ( 𝑓 ‘ 𝑘 ) ) = ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 27 | 21 25 26 | syl2anc | ⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑓 ‘ 𝑗 ) 𝐷 ( 𝑓 ‘ 𝑘 ) ) = ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 28 | 27 | breq1d | ⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝑓 ‘ 𝑗 ) 𝐷 ( 𝑓 ‘ 𝑘 ) ) < 𝑥 ↔ ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 29 | 28 | ralbidva | ⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑗 ) 𝐷 ( 𝑓 ‘ 𝑘 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 30 | 29 | rexbidva | ⊢ ( 𝑓 : ℕ ⟶ ℋ → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑗 ) 𝐷 ( 𝑓 ‘ 𝑘 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 31 | 30 | ralbidv | ⊢ ( 𝑓 : ℕ ⟶ ℋ → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑗 ) 𝐷 ( 𝑓 ‘ 𝑘 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 32 | 19 31 | bitrd | ⊢ ( 𝑓 : ℕ ⟶ ℋ → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 33 | 11 32 | sylbi | ⊢ ( 𝑓 ∈ ( ℋ ↑m ℕ ) → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 34 | 33 | pm5.32i | ⊢ ( ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 𝑓 ∈ ( Cau ‘ 𝐷 ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 35 | 7 8 34 | 3bitri | ⊢ ( 𝑓 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 36 | 35 | eqabi | ⊢ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) = { 𝑓 ∣ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) } |
| 37 | 5 6 36 | 3eqtr4i | ⊢ Cauchy = ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) |