This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of Cauchy sequences on a Hilbert space. See hcau for its membership relation. Note that f : NN --> ~H is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of Cauchy sequence in Beran p. 96. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-hcau | ⊢ Cauchy = { 𝑓 ∈ ( ℋ ↑m ℕ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 ) −ℎ ( 𝑓 ‘ 𝑧 ) ) ) < 𝑥 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccauold | ⊢ Cauchy | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | chba | ⊢ ℋ | |
| 3 | cmap | ⊢ ↑m | |
| 4 | cn | ⊢ ℕ | |
| 5 | 2 4 3 | co | ⊢ ( ℋ ↑m ℕ ) |
| 6 | vx | ⊢ 𝑥 | |
| 7 | crp | ⊢ ℝ+ | |
| 8 | vy | ⊢ 𝑦 | |
| 9 | vz | ⊢ 𝑧 | |
| 10 | cuz | ⊢ ℤ≥ | |
| 11 | 8 | cv | ⊢ 𝑦 |
| 12 | 11 10 | cfv | ⊢ ( ℤ≥ ‘ 𝑦 ) |
| 13 | cno | ⊢ normℎ | |
| 14 | 1 | cv | ⊢ 𝑓 |
| 15 | 11 14 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) |
| 16 | cmv | ⊢ −ℎ | |
| 17 | 9 | cv | ⊢ 𝑧 |
| 18 | 17 14 | cfv | ⊢ ( 𝑓 ‘ 𝑧 ) |
| 19 | 15 18 16 | co | ⊢ ( ( 𝑓 ‘ 𝑦 ) −ℎ ( 𝑓 ‘ 𝑧 ) ) |
| 20 | 19 13 | cfv | ⊢ ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 ) −ℎ ( 𝑓 ‘ 𝑧 ) ) ) |
| 21 | clt | ⊢ < | |
| 22 | 6 | cv | ⊢ 𝑥 |
| 23 | 20 22 21 | wbr | ⊢ ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 ) −ℎ ( 𝑓 ‘ 𝑧 ) ) ) < 𝑥 |
| 24 | 23 9 12 | wral | ⊢ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 ) −ℎ ( 𝑓 ‘ 𝑧 ) ) ) < 𝑥 |
| 25 | 24 8 4 | wrex | ⊢ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 ) −ℎ ( 𝑓 ‘ 𝑧 ) ) ) < 𝑥 |
| 26 | 25 6 7 | wral | ⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 ) −ℎ ( 𝑓 ‘ 𝑧 ) ) ) < 𝑥 |
| 27 | 26 1 5 | crab | ⊢ { 𝑓 ∈ ( ℋ ↑m ℕ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 ) −ℎ ( 𝑓 ‘ 𝑧 ) ) ) < 𝑥 } |
| 28 | 0 27 | wceq | ⊢ Cauchy = { 𝑓 ∈ ( ℋ ↑m ℕ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 ) −ℎ ( 𝑓 ‘ 𝑧 ) ) ) < 𝑥 } |