This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 13-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | h2hc.1 | |- U = <. <. +h , .h >. , normh >. |
|
| h2hc.2 | |- U e. NrmCVec |
||
| h2hc.3 | |- ~H = ( BaseSet ` U ) |
||
| h2hc.4 | |- D = ( IndMet ` U ) |
||
| Assertion | h2hcau | |- Cauchy = ( ( Cau ` D ) i^i ( ~H ^m NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h2hc.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | h2hc.2 | |- U e. NrmCVec |
|
| 3 | h2hc.3 | |- ~H = ( BaseSet ` U ) |
|
| 4 | h2hc.4 | |- D = ( IndMet ` U ) |
|
| 5 | df-rab | |- { f e. ( ~H ^m NN ) | A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` j ) -h ( f ` k ) ) ) < x } = { f | ( f e. ( ~H ^m NN ) /\ A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` j ) -h ( f ` k ) ) ) < x ) } |
|
| 6 | df-hcau | |- Cauchy = { f e. ( ~H ^m NN ) | A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` j ) -h ( f ` k ) ) ) < x } |
|
| 7 | elin | |- ( f e. ( ( Cau ` D ) i^i ( ~H ^m NN ) ) <-> ( f e. ( Cau ` D ) /\ f e. ( ~H ^m NN ) ) ) |
|
| 8 | ancom | |- ( ( f e. ( Cau ` D ) /\ f e. ( ~H ^m NN ) ) <-> ( f e. ( ~H ^m NN ) /\ f e. ( Cau ` D ) ) ) |
|
| 9 | 3 | hlex | |- ~H e. _V |
| 10 | nnex | |- NN e. _V |
|
| 11 | 9 10 | elmap | |- ( f e. ( ~H ^m NN ) <-> f : NN --> ~H ) |
| 12 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 13 | 3 4 | imsxmet | |- ( U e. NrmCVec -> D e. ( *Met ` ~H ) ) |
| 14 | 2 13 | mp1i | |- ( f : NN --> ~H -> D e. ( *Met ` ~H ) ) |
| 15 | 1zzd | |- ( f : NN --> ~H -> 1 e. ZZ ) |
|
| 16 | eqidd | |- ( ( f : NN --> ~H /\ k e. NN ) -> ( f ` k ) = ( f ` k ) ) |
|
| 17 | eqidd | |- ( ( f : NN --> ~H /\ j e. NN ) -> ( f ` j ) = ( f ` j ) ) |
|
| 18 | id | |- ( f : NN --> ~H -> f : NN --> ~H ) |
|
| 19 | 12 14 15 16 17 18 | iscauf | |- ( f : NN --> ~H -> ( f e. ( Cau ` D ) <-> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( f ` j ) D ( f ` k ) ) < x ) ) |
| 20 | ffvelcdm | |- ( ( f : NN --> ~H /\ j e. NN ) -> ( f ` j ) e. ~H ) |
|
| 21 | 20 | adantr | |- ( ( ( f : NN --> ~H /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( f ` j ) e. ~H ) |
| 22 | eluznn | |- ( ( j e. NN /\ k e. ( ZZ>= ` j ) ) -> k e. NN ) |
|
| 23 | ffvelcdm | |- ( ( f : NN --> ~H /\ k e. NN ) -> ( f ` k ) e. ~H ) |
|
| 24 | 22 23 | sylan2 | |- ( ( f : NN --> ~H /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( f ` k ) e. ~H ) |
| 25 | 24 | anassrs | |- ( ( ( f : NN --> ~H /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( f ` k ) e. ~H ) |
| 26 | 1 2 3 4 | h2hmetdval | |- ( ( ( f ` j ) e. ~H /\ ( f ` k ) e. ~H ) -> ( ( f ` j ) D ( f ` k ) ) = ( normh ` ( ( f ` j ) -h ( f ` k ) ) ) ) |
| 27 | 21 25 26 | syl2anc | |- ( ( ( f : NN --> ~H /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( f ` j ) D ( f ` k ) ) = ( normh ` ( ( f ` j ) -h ( f ` k ) ) ) ) |
| 28 | 27 | breq1d | |- ( ( ( f : NN --> ~H /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( f ` j ) D ( f ` k ) ) < x <-> ( normh ` ( ( f ` j ) -h ( f ` k ) ) ) < x ) ) |
| 29 | 28 | ralbidva | |- ( ( f : NN --> ~H /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( f ` j ) D ( f ` k ) ) < x <-> A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` j ) -h ( f ` k ) ) ) < x ) ) |
| 30 | 29 | rexbidva | |- ( f : NN --> ~H -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( f ` j ) D ( f ` k ) ) < x <-> E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` j ) -h ( f ` k ) ) ) < x ) ) |
| 31 | 30 | ralbidv | |- ( f : NN --> ~H -> ( A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( f ` j ) D ( f ` k ) ) < x <-> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` j ) -h ( f ` k ) ) ) < x ) ) |
| 32 | 19 31 | bitrd | |- ( f : NN --> ~H -> ( f e. ( Cau ` D ) <-> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` j ) -h ( f ` k ) ) ) < x ) ) |
| 33 | 11 32 | sylbi | |- ( f e. ( ~H ^m NN ) -> ( f e. ( Cau ` D ) <-> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` j ) -h ( f ` k ) ) ) < x ) ) |
| 34 | 33 | pm5.32i | |- ( ( f e. ( ~H ^m NN ) /\ f e. ( Cau ` D ) ) <-> ( f e. ( ~H ^m NN ) /\ A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` j ) -h ( f ` k ) ) ) < x ) ) |
| 35 | 7 8 34 | 3bitri | |- ( f e. ( ( Cau ` D ) i^i ( ~H ^m NN ) ) <-> ( f e. ( ~H ^m NN ) /\ A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` j ) -h ( f ` k ) ) ) < x ) ) |
| 36 | 35 | eqabi | |- ( ( Cau ` D ) i^i ( ~H ^m NN ) ) = { f | ( f e. ( ~H ^m NN ) /\ A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( f ` j ) -h ( f ` k ) ) ) < x ) } |
| 37 | 5 6 36 | 3eqtr4i | |- Cauchy = ( ( Cau ` D ) i^i ( ~H ^m NN ) ) |