This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A 1-dimensional subspace is an atom. (Contributed by NM, 22-Jul-2001) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | h1datom | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ 𝐴 = 0ℋ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) | |
| 2 | eqeq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) | |
| 3 | eqeq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 = 0ℋ ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = 0ℋ ) ) | |
| 4 | 2 3 | orbi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ 𝐴 = 0ℋ ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = 0ℋ ) ) ) |
| 5 | 1 4 | imbi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ 𝐴 = 0ℋ ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = 0ℋ ) ) ) ) |
| 6 | sneq | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → { 𝐵 } = { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) | |
| 7 | 6 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ⊥ ‘ { 𝐵 } ) = ( ⊥ ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) = ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ) |
| 9 | 8 | sseq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ) ) |
| 10 | 8 | eqeq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ) ) |
| 11 | 10 | orbi1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = 0ℋ ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ∨ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = 0ℋ ) ) ) |
| 12 | 9 11 | imbi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = 0ℋ ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ∨ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = 0ℋ ) ) ) ) |
| 13 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 14 | 13 | elimel | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∈ Cℋ |
| 15 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 16 | 14 15 | h1datomi | ⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ∨ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = 0ℋ ) ) |
| 17 | 5 12 16 | dedth2h | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ 𝐴 = 0ℋ ) ) ) |