This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write a group sum over a cartesian product as a double sum in two ways. This corresponds to the first equation in Lang p. 6. (Contributed by AV, 27-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumxp2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumxp2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumxp2.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsumxp2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumxp2.r | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | ||
| gsumxp2.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) | ||
| gsumxp2.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | gsumxp2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumxp2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumxp2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumxp2.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsumxp2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | gsumxp2.r | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | |
| 6 | gsumxp2.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) | |
| 7 | gsumxp2.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 8 | 6 | fovcdmda | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 9 | 7 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 10 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝜑 ) | |
| 11 | opelxpi | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 × 𝐶 ) ) | |
| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 × 𝐶 ) ) |
| 13 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) → ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) | |
| 14 | 12 13 | eldifd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) → 〈 𝑗 , 𝑘 〉 ∈ ( ( 𝐴 × 𝐶 ) ∖ ( 𝐹 supp 0 ) ) ) |
| 15 | ssidd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) | |
| 16 | 4 5 | xpexd | ⊢ ( 𝜑 → ( 𝐴 × 𝐶 ) ∈ V ) |
| 17 | 2 | fvexi | ⊢ 0 ∈ V |
| 18 | 17 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 19 | 6 15 16 18 | suppssr | ⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ ( ( 𝐴 × 𝐶 ) ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) = 0 ) |
| 20 | 10 14 19 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) = 0 ) |
| 21 | 20 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → ( ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) = 0 ) ) |
| 22 | df-br | ⊢ ( 𝑗 ( 𝐹 supp 0 ) 𝑘 ↔ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) | |
| 23 | 22 | notbii | ⊢ ( ¬ 𝑗 ( 𝐹 supp 0 ) 𝑘 ↔ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) |
| 24 | df-ov | ⊢ ( 𝑗 𝐹 𝑘 ) = ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) | |
| 25 | 24 | eqeq1i | ⊢ ( ( 𝑗 𝐹 𝑘 ) = 0 ↔ ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) = 0 ) |
| 26 | 21 23 25 | 3imtr4g | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → ( ¬ 𝑗 ( 𝐹 supp 0 ) 𝑘 → ( 𝑗 𝐹 𝑘 ) = 0 ) ) |
| 27 | 26 | impr | ⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 ( 𝐹 supp 0 ) 𝑘 ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
| 28 | 1 2 3 4 5 8 9 27 | gsumcom3 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 29 | 28 | eqcomd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |