This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write a group sum over a cartesian product as a double sum in two ways. This corresponds to the first equation in Lang p. 6. (Contributed by AV, 27-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumxp2.b | |- B = ( Base ` G ) |
|
| gsumxp2.z | |- .0. = ( 0g ` G ) |
||
| gsumxp2.g | |- ( ph -> G e. CMnd ) |
||
| gsumxp2.a | |- ( ph -> A e. V ) |
||
| gsumxp2.r | |- ( ph -> C e. W ) |
||
| gsumxp2.f | |- ( ph -> F : ( A X. C ) --> B ) |
||
| gsumxp2.w | |- ( ph -> F finSupp .0. ) |
||
| Assertion | gsumxp2 | |- ( ph -> ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> ( j F k ) ) ) ) ) = ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> ( j F k ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumxp2.b | |- B = ( Base ` G ) |
|
| 2 | gsumxp2.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsumxp2.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsumxp2.a | |- ( ph -> A e. V ) |
|
| 5 | gsumxp2.r | |- ( ph -> C e. W ) |
|
| 6 | gsumxp2.f | |- ( ph -> F : ( A X. C ) --> B ) |
|
| 7 | gsumxp2.w | |- ( ph -> F finSupp .0. ) |
|
| 8 | 6 | fovcdmda | |- ( ( ph /\ ( j e. A /\ k e. C ) ) -> ( j F k ) e. B ) |
| 9 | 7 | fsuppimpd | |- ( ph -> ( F supp .0. ) e. Fin ) |
| 10 | simpl | |- ( ( ph /\ ( j e. A /\ k e. C ) ) -> ph ) |
|
| 11 | opelxpi | |- ( ( j e. A /\ k e. C ) -> <. j , k >. e. ( A X. C ) ) |
|
| 12 | 11 | ad2antlr | |- ( ( ( ph /\ ( j e. A /\ k e. C ) ) /\ -. <. j , k >. e. ( F supp .0. ) ) -> <. j , k >. e. ( A X. C ) ) |
| 13 | simpr | |- ( ( ( ph /\ ( j e. A /\ k e. C ) ) /\ -. <. j , k >. e. ( F supp .0. ) ) -> -. <. j , k >. e. ( F supp .0. ) ) |
|
| 14 | 12 13 | eldifd | |- ( ( ( ph /\ ( j e. A /\ k e. C ) ) /\ -. <. j , k >. e. ( F supp .0. ) ) -> <. j , k >. e. ( ( A X. C ) \ ( F supp .0. ) ) ) |
| 15 | ssidd | |- ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) |
|
| 16 | 4 5 | xpexd | |- ( ph -> ( A X. C ) e. _V ) |
| 17 | 2 | fvexi | |- .0. e. _V |
| 18 | 17 | a1i | |- ( ph -> .0. e. _V ) |
| 19 | 6 15 16 18 | suppssr | |- ( ( ph /\ <. j , k >. e. ( ( A X. C ) \ ( F supp .0. ) ) ) -> ( F ` <. j , k >. ) = .0. ) |
| 20 | 10 14 19 | syl2an2r | |- ( ( ( ph /\ ( j e. A /\ k e. C ) ) /\ -. <. j , k >. e. ( F supp .0. ) ) -> ( F ` <. j , k >. ) = .0. ) |
| 21 | 20 | ex | |- ( ( ph /\ ( j e. A /\ k e. C ) ) -> ( -. <. j , k >. e. ( F supp .0. ) -> ( F ` <. j , k >. ) = .0. ) ) |
| 22 | df-br | |- ( j ( F supp .0. ) k <-> <. j , k >. e. ( F supp .0. ) ) |
|
| 23 | 22 | notbii | |- ( -. j ( F supp .0. ) k <-> -. <. j , k >. e. ( F supp .0. ) ) |
| 24 | df-ov | |- ( j F k ) = ( F ` <. j , k >. ) |
|
| 25 | 24 | eqeq1i | |- ( ( j F k ) = .0. <-> ( F ` <. j , k >. ) = .0. ) |
| 26 | 21 23 25 | 3imtr4g | |- ( ( ph /\ ( j e. A /\ k e. C ) ) -> ( -. j ( F supp .0. ) k -> ( j F k ) = .0. ) ) |
| 27 | 26 | impr | |- ( ( ph /\ ( ( j e. A /\ k e. C ) /\ -. j ( F supp .0. ) k ) ) -> ( j F k ) = .0. ) |
| 28 | 1 2 3 4 5 8 9 27 | gsumcom3 | |- ( ph -> ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> ( j F k ) ) ) ) ) = ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> ( j F k ) ) ) ) ) ) |
| 29 | 28 | eqcomd | |- ( ph -> ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> ( j F k ) ) ) ) ) = ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> ( j F k ) ) ) ) ) ) |