This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two polynomials over the same ring are equal iff they have identical coefficients. (Contributed by AV, 13-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqcoe1ply1eq.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| eqcoe1ply1eq.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| eqcoe1ply1eq.a | ⊢ 𝐴 = ( coe1 ‘ 𝐾 ) | ||
| eqcoe1ply1eq.c | ⊢ 𝐶 = ( coe1 ‘ 𝐿 ) | ||
| Assertion | ply1coe1eq | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ↔ 𝐾 = 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcoe1ply1eq.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | eqcoe1ply1eq.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | eqcoe1ply1eq.a | ⊢ 𝐴 = ( coe1 ‘ 𝐾 ) | |
| 4 | eqcoe1ply1eq.c | ⊢ 𝐶 = ( coe1 ‘ 𝐿 ) | |
| 5 | 1 2 3 4 | eqcoe1ply1eq | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) → 𝐾 = 𝐿 ) ) |
| 6 | fveq2 | ⊢ ( 𝐾 = 𝐿 → ( coe1 ‘ 𝐾 ) = ( coe1 ‘ 𝐿 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝐾 = 𝐿 ) → ( coe1 ‘ 𝐾 ) = ( coe1 ‘ 𝐿 ) ) |
| 8 | 7 3 4 | 3eqtr4g | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝐾 = 𝐿 ) → 𝐴 = 𝐶 ) |
| 9 | 8 | adantr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝐾 = 𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 = 𝐶 ) |
| 10 | 9 | fveq1d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝐾 = 𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) |
| 11 | 10 | ralrimiva | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝐾 = 𝐿 ) → ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) |
| 12 | 11 | ex | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 𝐾 = 𝐿 → ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) ) |
| 13 | 5 12 | impbid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ↔ 𝐾 = 𝐿 ) ) |