This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummhm2.b | ||
| gsummhm2.z | |||
| gsummhm2.g | |||
| gsummhm2.h | |||
| gsummhm2.a | |||
| gsummhm2.k | |||
| gsummhm2.f | |||
| gsummhm2.w | |||
| gsummhm2.1 | |||
| gsummhm2.2 | |||
| Assertion | gsummhm2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummhm2.b | ||
| 2 | gsummhm2.z | ||
| 3 | gsummhm2.g | ||
| 4 | gsummhm2.h | ||
| 5 | gsummhm2.a | ||
| 6 | gsummhm2.k | ||
| 7 | gsummhm2.f | ||
| 8 | gsummhm2.w | ||
| 9 | gsummhm2.1 | ||
| 10 | gsummhm2.2 | ||
| 11 | 7 | fmpttd | |
| 12 | 1 2 3 4 5 6 11 8 | gsummhm | |
| 13 | eqidd | ||
| 14 | eqidd | ||
| 15 | 7 13 14 9 | fmptco | |
| 16 | 15 | oveq2d | |
| 17 | eqid | ||
| 18 | 1 2 3 5 11 8 | gsumcl | |
| 19 | 10 | eleq1d | |
| 20 | eqid | ||
| 21 | 1 20 | mhmf | |
| 22 | 6 21 | syl | |
| 23 | 17 | fmpt | |
| 24 | 22 23 | sylibr | |
| 25 | 19 24 18 | rspcdva | |
| 26 | 17 10 18 25 | fvmptd3 | |
| 27 | 12 16 26 | 3eqtr3d |